CHAPTER

Number Systems

Animation 1.1: Complex Plane Source & Credit: elearn.punjab

1.2 Rational Numbers and Irrational Numbers

 $q \in Z \land q \neq 0$. The numbers $\sqrt{16}$, 3.7, 4 etc., are rational numbers. $\sqrt{16}$ can be reduced to the

form $\frac{p}{q}$ where $p, q \in \mathbb{Z}$

1.2.1 Decimal Representation of Rational and Irrational Numbers

1) Terminating decimals: A decimal which has only a finite number of digits in its decimal part, is called a terminating decimal. Thus 202.04, 0.0000415, 100000.41237895 are examples of terminating decimals. Since a terminating decimal can be converted into a common fraction, so every terminating decimal represents a **rational number**.

periodic decimal is a decimal in which one or more digits repeat indefinitely. It will be shown (in the chapter on sequences and series) that a recurring decimal can be converted into a common fraction. So every recurring decimal represents a rational number:

A non-terminating, non-recurring decimal is a decimal which neither terminates nor it is recurring. It is not possible to convert such a decimal into a common fraction. Thus a non-terminating, non-recurring decimal represents an irrational number.

1.1 Introduction

In the very beginning, human life was simple. An early ancient herdsman compared sheep (or cattle) of his herd with a pile of stones when the herd left for grazing and again on its return for missing animals. In the earliest systems probably the vertical strokes or bars such as I, II, III, III etc.. were used for the numbers 1, 2, 3, 4 etc. The symbol "IIIII" was used by many people including the ancient Egyptians for the number of fingers of one hand.

Around 5000 B.C, the Egyptians had a number system based on 10. The symbol () for 10 and () for 100 were used by them. A symbol was repeated as many times as it was needed. For example, the numbers 13 and 324 were symbolized as $\bigcap \parallel \mid$ and +1. Different people invented their own symbols for numbers. But these systems of notations proved to be inadequate with advancement of societies and were discarded. Ultimately the set {1, 2, 3, 4, ...} with base 10 was adopted as the counting set (also called the set of natural numbers). The solution of the equation x + 2 = 2 was not possible in the set of natural numbers, So the natural number system was extended to the set of whole numbers. No number in the set of whole numbers W could satisfy the equation x + 4 = 2 or x + a = b, if a > b, and $a, b, \in W$. The negative integers $-1, -2, -3, \dots$ were introduced to form the set of integers $Z = \{0, \pm 1, \pm 2, ...\}$.

Again the equation of the type 2x = 3 or bx = a where $a,b,\in Z$ and $b \neq 0$ had no solution in the set Z, so the numbers of the form $\frac{a}{b}$ where $a,b,\in Z$ and $b \neq 0$, were invented to remove such difficulties. The set Q = { $\frac{a}{b}$ | $a, b, \in \mathbb{Z} \land b \neq 0$ } was named as the set of rational numbers. Still the solution of equations

such as $x^2 = 2$ or $x^2 = a$ (where a is not a perfect square) was not possible in the set Q. So the irrational numbers of the type $\pm \sqrt{2}$ or $\pm \sqrt{a}$ where *a* is not a perfect square were introduced. This process of enlargement of the number system ultimately led to the set of real numbers $\Re = Q \cup Q'$ (Q' is the set of irrational numbers) which is used most frequently in everyday life.

We know that a rational number is a number which can be put in the form $\frac{p}{q}$ where p,

Z, and
$$q \neq 0$$
 because $\sqrt{16} = 4 = \frac{4}{1}$.

Irrational numbers are those numbers which cannot be put into the form $\frac{p}{2}$ where *p*, *q* \in Z and *q* \neq 0. The numbers $\sqrt{2}$, $\sqrt{3}$, $\frac{7}{\sqrt{5}}$, $\sqrt{\frac{5}{16}}$ are irrational numbers.

2) Recurring Decimals: This is another type of rational numbers. In general, a recurring or

eLearn.Punjab

1. Number Systems

Squaring both sides we get;

$$2 = \frac{p^2}{q^2} \text{ or } p$$

so that equation (1) takes the form: $4p^{2} = 2q^{2}$ $2p^{2} = q^{2}$ i.e., that equation 3 takes the form

From equations (1) a

$$p = 2p'$$

and from equations
 $q = 2q'$

$$\therefore \quad \frac{p}{q} = \frac{2p'}{2q'}$$

then $\sqrt{3} = p/q$, (*q* ≠ 0) Squaring this equation we get;

$$3 = \frac{p^2}{q^2}$$

Example 1:

i) .25
$$\left(=\frac{25}{100}\right)$$
 is a rational number.

.333... $\left(=\frac{1}{2}\right)$ is a recurring decimal, it is a rational number. ii)

iii)
$$2.\overline{3}(=2.333...)$$
 is a rational number.

iv) 0.142857142857...
$$(=\frac{1}{7})$$
 is a rational number.

- 0.01001000100001 ... is a non-terminating, non-periodic decimal, so it is an V) irrational number.
- 214.121122111222 1111 2222 ... is also an irrational number. vi)
- vii) 1.4142135 ... is an irrational number.
- viii) 7.3205080 ... is an irrational number.
- 1.709975947 ... is an irrational number. ix)
- 3.141592654... is an important irrational number called it π (Pi) which X) denotes the constant ratio of the circumference of any circle to the length of its diameter i.e.,

 $\pi = \frac{\text{circumference of any circle}}{\text{length of its diameter.}}$

An approximate value of π is $\frac{22}{7}$, a better approximation is $\frac{355}{113}$ and a still better

approximation is 3.14159. The value of π correct to 5 lac decimal places has been determined with the help of computer.

Example 2: Prove $\sqrt{2}$ is an irrational number.

Solution: Suppose, if possible, $\sqrt{2}$ is rational so that it can be written in the form p/q where $p,q \in Z$ and $q \neq 0$. Suppose further that p/q is in its lowest form.

Then $\sqrt{2} = p/q$, (*q* ≠ 0)

version: 1.1

$$p^2 = 2q^2 \tag{1}$$

The R.H.S. of this equation has a factor 2. Its L.H.S. must have the same factor. Now a prime number can be a factor of a square only if it occurs at least twice in the square. Therefore, p^2 should be of the form $4p^{\prime 2}$

....(2)

....(3) In the last equation, 2 is a factor of the L.H.S. Therefore, q^2 should be of the form $4q^2$ so

 $2p^{2} = 4q^{2}$ i.e., $p^{2} = 2q^{2}$(4)

and (2),

(3) and (4)

This contradicts the hypothesis that $\frac{p}{a}$ is in its lowest form. Hence $\sqrt{2}$ is irrational.

Example 3: Prove $\sqrt{3}$ is an irrational number.

Solution: Suppose, if possible $\sqrt{3}$ is rational so that it can be written in the form p/q when $p,q \in Z$ and $q \neq 0$. Suppose further that p/q is in its lowest form,

>(1) or $p^2 = 3q^2$

Number Systems	eLearn.Punjak		
The R.H.S. of this equation has a factor 3. I Now a prime number can be a factor of the square. Therefore, p^2 should be of the form $9p'^2 = 3q^2$ i.e., $3p'^2 = q^2$	ts L.H.S. must have the same factor. a square only if it occurs at least twice in m $9p^2$ so that equation (1) takes the form: (2) (3)		
In the last equation, 3 is a should be of the form $9q'^2$ so t $3p'^2 = 9q^2$ i.e., $p'^2 = 3q'^2$ From equations (1) and (2), P = 3P' and from equations (3) and (4) q = 2q'	factor of the L.H.S. Therefore, <i>q</i> ² hat equation (3) takes the form (4)		
$q = 3q^{2}$ $\therefore \frac{p}{q} = \frac{3p'}{3q'}$ This contradicts the hypothesis that $\frac{p}{q}$ is in Hence $\sqrt{3}$ is irrational.	n its lowest form.		
Note: Using the same method we	e can prove the irrationality of		

 $\sqrt{5}, \sqrt{7}, \dots, \sqrt{n}$ where *n* is any prime number.

1.3 Properties of Real Numbers

We are already familiar with the set of real numbers and most of their properties. We now state them in a unified and systematic manner. Before stating them we give a preliminary definition.

Binary Operation: A binary operation may be defined as a function from $A \times A$ into A, but for the present discussion, the following definition would serve the purpose. A binary operation in a set A is a rule usually denoted by * that assigns to any pair of elements of A, taken in a definite order, another element of A.

Two important binary operations are addition and multiplication in the set of real numbers. Similarly, union and intersection are binary operations on sets which are subsets of the same Universal set.

1. Number Systems

for real numbers.

1. Addition Laws: -**Closure Law of Addition** i) $\forall a, b \in \mathfrak{R}, a + b \in \mathfrak{R}$ ii) iii) **Additive Identity Additive Inverse** iv) a + (-a) = 0 = (-a) + aV) $\forall a, b \in \Re, a + b = b + a$ **Multiplication Laws** 2. vi) $\forall a, b \in \mathfrak{R}, a, b \in \mathfrak{R}$ vii) $\forall a, b, c \in \mathfrak{R}, a(bc) = (ab)c$ Multiplicative Identity viii) Multiplicative Inverse ix) X) $\forall a, b \in \Re, ab = ba$

oloarn Duniah

 \mathfrak{R} usually denotes the set of real numbers. We assume that two binary operations addition (+) and multiplication (. or x) are defined in \Re . Following are the properties or laws

```
(\forall stands for "for all")
Associative Law of Addition
 \forall a, b, c \in \mathfrak{R}, a + (b + c) = (a + b) + c
\forall a \in \mathfrak{R}, \exists 0 \in \mathfrak{R} \text{ such that } a + 0 = 0 + a = a
(\exists stands for "there exists").
0(read as zero) is called the identity element of addition.
\forall a \in \mathfrak{R}, \exists (-a) \in \mathfrak{R} such that
Commutative Law for Addition
Closure I.aw of Multiplication
                                             (a,b is usually written as ab).
Associative Law for Multiplication
\forall a \in \mathfrak{R}, \exists 1 \in \mathfrak{R} \text{ such that } a.1 = 1.a = a
1 is called the multiplicative identity of real numbers.
\forall a (\neq 0) \in \mathfrak{R}, \exists a^{-1} \in \mathfrak{R} such that a \cdot a^{-1} = a^{-1} \cdot a = 1 (a^{-1} is also written as \frac{1}{a}).
```

Commutative Law of multiplication

1. Number Systems

2 Madain line time Addition Low	
3. Multiplication – Addition Law	$(c) \forall a, b, c, a \in \mathcal{K}$
XI) $\forall a, b, c \in \mathcal{K},$ a(b + c) = ab + ac (Distributivity of multiplication over addition)	I) U = D \ C =
a(b+c) = ab + ac (Distributivity of multiplication over addition).	
(u + b)c = uc + bc	
i) Order Properties (described below)	1 Any set posses
ii) Completeness axiom which will be explained in higher classes	2 From the multiplic
The above properties characterizes \hat{x}_{i} is a poly \hat{x}_{i} possesses all these proper	z. From the multiple
Before stating the order axioms we state the properties of equality of numbers	multiplication of th
 A properties of Equality 	$3 \text{ and } (-\alpha) \text{ are addited by } (-\alpha)$
Figure it is of Equality Equality of numbers denoted by "=" nossesses the following properties:-	5. a and (-a) are addi
i) Reflexive property $\forall a \in \Re a = a$	4 The left han
ii) Symmetric Property $\forall a \in \mathcal{R} \ a = b \rightarrow b = a$	read as nega
iii) Transitive Property $\forall a, b, c \in \Re, a = b \land b = c \Rightarrow a = c$	
iv) Additive Property $\forall a, b, c \in \Re, a = b \Rightarrow a + c = b + c$	5. a and $\frac{1}{2}$ are
v) Multiplicative Property $\forall a, b, c \in \mathfrak{R}, a = b \Rightarrow ac = bc \land ca = cb.$	a
vi) <u>Cancellation Property w.r.t. addition</u>	definition invers
$\forall a,b,c \in \mathfrak{R}, a+c=b+c \Rightarrow a=b$	
vii) Cancellation Property w.r.t. Multiplication:	
$\forall a,b,c \in \mathfrak{R}, ac = bc \Longrightarrow a = b, c \neq 0$	
5. Properties of Ineualities (Order properties)	
1) <u>Trichotomy Property</u> $\forall a, b \in \Re$	Everyone 4. Drave th
either $a = b$ or $a > b$ or $a < b$	Example 4: Prove th
2) <u>Transitive Property</u> $\forall a,b,c \in \Re$	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
i) $a > b \land b > c \Rightarrow a > c$ ii) $a < b \land b < c \Rightarrow a < c$	
3) Additive Property: $\forall a,b,c \in \Re$	
a) i) $a > b \Rightarrow a + c > b + c$ b) i) $a > b \land c > d \Rightarrow a + c > b + d$	
ii) $a < b \Rightarrow a + c < b + c$ ii) $a < b \land c < d \Rightarrow a + c < b + d$	= 0 =
4) <u>Multiplicative Properties:</u>	= 0
a) $\forall a,b,c \in \mathfrak{R} \text{ and } c > 0$	Thus $q = 0$
i) $a > b \Rightarrow ac > bc$ ii) $a < b \Rightarrow ac < bc$.	ii) Giver
b) $\forall a,b,c \in \Re$ and $c < 0$.	Suppose $a \neq 0$ the suppo
i) $a > b \Rightarrow ac < bc$ ii) $a < b \Rightarrow ac > bc$	

8

version: 1.1

and *a*,*b*,*c*,*d* are all positive. $> d \Rightarrow ac > bd$. ii) $a < b \land c < d \Rightarrow ac < bd$

Note That:

ssing all the above 11 properties is called a field. cative properties of inequality we conclude that: - If both the sides re multiplied by a +ve number, its direction does not change, but he two sides by -ve number reverses the direction of the inequality. itive inverses of each other. Since by definition inverse of -a is a,

$$-(-a) = a$$

nd member equation of the above should be a'. of 'negative a' and not 'minus minus ative the multiplicative inverses of each other. Since by of (i.e., inverse of a^{-1} is a), is *a*≠0 se а

:.
$$(a^{-1})^{-1} = a$$
 or $\frac{1}{\frac{1}{a}} = a$

hat for any real numbers a, b 0 ii) $ab = 0 \Rightarrow a = 0 \lor b = 0$ [\lor stands for "or"] (Property of additive inverse) *a*[1+ (–1)] -1) (Def. of subtraction) (Distributive Law) *–a*.1 (Property of multiplicative identity) а (Def. of subtraction) (*-a*) (Property of additive inverse)

en that ab = 0hen exists (1)

1. Number Systems		eLearn.Punjab	1. Number Systems
(1) gives: $\frac{1}{a}(ab) = \frac{1}{a}.0$	(Multiplicative property of equality)		iv) $\frac{a}{b} = \frac{ka}{kb}, (k \neq k)$
$\Rightarrow (\frac{1}{a} . a)b = \frac{1}{a} . 0$	(Assoc. law of $ imes$)		$V) \qquad \frac{\frac{a}{b}}{c} = \frac{ad}{bc}$
$\Rightarrow 1.b = 0$ $\Rightarrow b = 0$ Thus if $ab = 0$ and $a \neq 0$ then	(Property of multiplicative inverse). (Property of multiplicative identity).		\overline{d}
Similarly it may be show	n that		Solution:
if $ab = 0$ and $b \neq 0$, then $ab = 0 \Rightarrow a = 0$ or $b = 0$.	a = 0.		i) $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{b} \frac{a}{a.1}$
Example 5: For real numbers i) $(-a) b = a (-b) =$	a,b show the following by stating the proper = $-ab$ ii) ($-a$) ($-b$) = ab	ties used.	$\Rightarrow {b}$ $\Rightarrow a.(-$
Solution: i) $(-a)(b) + ab = (a)(a)(b) + ab = (a)(a)(b)(b) + ab = (a)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)$	(-a + a)b (Distributive law) (Distributive law) (Distributive law) (Distributive law)		$\Rightarrow ad$ $\therefore ad$
(–a)b i.e (–a)b and ab are ac	+ <i>ab</i> = 0 dditive inverse of each other.		Again $ad = bc \Rightarrow (a)$
∴ (–a)b	$= -(ab) = -ab$ ($\Theta - (ab)$ is written as $-ab$)		$\Rightarrow a$.
(-a) (-b) -ab = (-a)(-b) = (-a)(-b)(-b) = (-a)(-b)(-b) = (-a)(-b)(-b) = (-a)(-b)(-b) = (-a)(-b)(-b)(-b)(-b)(-b)(-b)(-b)(-b)(-b)(-b	= (-a)(-b) + (-ab) b) + (-a)(b) (By (i)) b + b) (Distributive law) b = 0 (Property of additive inv)	erse)	$\Rightarrow \frac{a}{b}$
(-a)(-b) = ab			ii) $(ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{a} \cdot \frac{1}{b} = (a \cdot \frac{1}{a}) \cdot (ab) \cdot \frac{1}{b} \cdot 1$
Example 6: Prove that			Thus <i>ab</i> and $\frac{1}{a}$. $\frac{1}{b}$
i) $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$	(Principle for equality of fractions		of <i>ab</i> is $\frac{1}{ab}$
ii) $\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}$			$\therefore \frac{1}{ab}$
iii) $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	(Rule for product of fractions).		iii) $\frac{a}{b} \cdot \frac{c}{d} = (a \cdot \frac{1}{b}) \cdot (c \cdot \frac{1}{d})$
		version: 1.1	• • • • •

10

(Golden rule of fractions)

(Rule for quotient of fractions).

The symbol \iff stands for iff i.e.. if and only if.

$$(bd) = \frac{c}{d}(bd)$$

$$\frac{1}{b}(bd) = \frac{c \cdot 1}{d}(bd)$$

$$(\frac{1}{b} \cdot b) \cdot d = c \cdot (\frac{1}{d} \cdot bd)$$

$$= c(bd \cdot \frac{1}{d})$$

$$d = cb$$

$$d = bc$$

$$(ad) \times \frac{1}{b} \cdot \frac{1}{d} = b \cdot c \cdot \frac{1}{b} \cdot \frac{1}{d}$$

$$a \cdot \frac{1}{b} \cdot d \cdot \frac{1}{d} = b \cdot \frac{1}{b} \cdot c \cdot \frac{1}{d}$$

$$\frac{a}{b} = \frac{c}{d}$$

$$(b\frac{1}{b}) = 1.1 = 1$$

 $\frac{1}{b}$ are the multiplicative inverse of each other. But multiplicative inverse

11

 $= \frac{1}{a} \cdot \frac{1}{b}$.

1. Number Systems	eLearn.Punjab	1. Number S	Systems
$= (ac)(\frac{1}{b}, \frac{1}{d})$ (Using commutative and associat $= ac.\frac{1}{b} = \frac{ac}{b}.$	ive laws of multiplication)	2. Name (Letter i) 2	e the properties used in the fo rs, where used, represent rea 1 + 9 = 9 + 4
$= \frac{a}{b} \cdot \frac{c}{d} = \left \frac{ac}{bd} \right $		iii) ($(\sqrt{3} + \sqrt{5}) + \sqrt{7} = \sqrt{3} + (\sqrt{5} + \sqrt{7})$
iv) $\frac{a}{b} = \frac{a}{b} \cdot 1 = \frac{a}{b} \cdot \frac{k}{k} = \frac{ak}{ak}$ $\therefore \frac{a}{b} = \frac{ak}{bk}.$		v) vii) ix) xi)	$1000 \times 1 = 1000$ a - a = 0 a(b - c) = ab - ac $4 \times (5 \times 8) = (4 \times 5) \times 8$
$V) \qquad \frac{\frac{a}{b}}{\frac{c}{c}} = \frac{\frac{a}{b}(bd)}{\frac{c}{c}(bd)} = \frac{ad(\frac{1}{b}.b)}{cb(\frac{1}{c}.d)} = \frac{ad}{bc}.$		3. Name i) -	the properties used in the fo -3 < -2 \Rightarrow 0 < 1
<i>d d d d d d d</i> Example 7: Does the set {1, –1 } possess closure property i) addition ii) multiplication?	y with respect to	iii) V)	$1 > -1 \implies -3 > -5$ $a > b \implies \frac{1}{a} < \frac{1}{b}$
Solution: i) $1 + 1 = 2$, $1 + (-1) = 0 = -1 + 1$		4. Prove	the following rules of additio

But 2, 0, –2 do not belong to the given set. That is, all the sums do not belong to the given set. So it does not possess closure property w.r.t. addition.

ii) 1.1=1, 1.(-1)=-1, (-1).1=-1, (-1).(-1)=1

-1 + (-1) = -2

Since all the products belong to the given set, it is closed w.r.t multiplication.

Exercise 1.1

i) {0} ii) {1} iii) (0,-1) iv) { 1, -1 }

version: 1.1

12

e the properties used in the following equations. ers, where used, represent real numbers).

ii)
$$(a+1) + \frac{3}{4} = a + (1 + \frac{3}{4})$$

 $(\sqrt{3} + \sqrt{5}) + \sqrt{7} = \sqrt{3} + (\sqrt{5} + \sqrt{7})$ iv) 100 + 0 = 100

vi) 4.1 + (-4.1) = 0viii) $x) \qquad (x-y)z = xz - yz$ xii) a(b+c-d) = ab + ac - ad.

e the properties used in the following inequalities:

-3 < -2 ⇒ 0 < 1 1 > -1 ⇒ -3 > -5	ii) iv)	$-5 < -4 \Rightarrow 20 > 16$ $q < 0 \Rightarrow -q > 0$
$a > b \implies \frac{1}{a} < \frac{1}{b}$	vi)	$a > b \implies -a < -b$

e the following rules of addition: -

ii)
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

5. Prove that $-\frac{7}{12} - \frac{5}{18} = \frac{-21 - 10}{36}$

 $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$

4 + 16x

i)

i)

6. Simplify by justifying each step: -

ii)
$$\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$$

13

iii)
$$\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} - \frac{c}{d}}$$
 iv)
$$\frac{\frac{1}{a} - \frac{1}{b}}{1 - \frac{1}{a} \cdot \frac{1}{b}}$$

1.4 Complex Numbers

The history of mathematics shows that man has been developing and enlarging his concept of **number** according to the saying that "Necessity is the mother of invention". In the remote past they stared with the set of counting numbers and invented, by stages, the negative numbers, rational numbers, irrational numbers. Since square of a positive as well as negative number is a positive number, the square

root of a negative number does not exist in the realm of real numbers. Therefore, square roots of negative numbers were given no attention for centuries together. However, recently, properties of numbers involving square roots of negative numbers have also been discussed in detail and such numbers have been found useful and have been applied in many branches o f pure and applied mathematics. The numbers of the

form x + iy, where $x, y \in \Re$, and i = ,are called **complex numbers**, here x is called **real part** and y is called **imaginary part** of the complex

number. For example, 3 + 4i, 2 - i etc. are complex numbers.

Note: Every real number is a complex number with 0 as its imaginary part.

Let us start with considering the equation.

$$x^2 + 1 = 0$$

(1)

 $x^2 = -1$ \Rightarrow

 $x = \pm \sqrt{-1}$ \Rightarrow

 $\sqrt{-1}$ does not belong to the set of real numbers. We, therefore, for convenience call it **imaginary number** and denote it by *i* (read as iota).

The product of a real number and *i* is also an **imaginary number**

Powers of *i* : $i^3 = i^2 \cdot i = -1 \cdot i = -i$

1.4.1 Operations on Complex Numbers

```
1) a + bi = c + di \Rightarrow
2) Addition: (a + bi)
3) k(a + bi) = ka + kk
4) (a + bi) - (c + di)
```

5) (a + bi).(c + di) =

6) Conjugate Comp

conjugate numbers.

Note: A real number is self-conjugate.

1.4.2 Complex Numbers as Ordered Pairs of Real Numbers

We can define complex numbers also by using ordered pairs. Let C be the set of ordered pairs belonging to $\mathfrak{R} \times \mathfrak{R}$ which are subject to the following properties: -

Thus 2i, -3i, $\sqrt{5i}$, $-\frac{11}{2}i$ are all imaginary numbers, *i* which may be written 1.*i* is also an imaginary number.

```
i^2 = -1 (by defination)
               i^4 = i^2 \times i^2 = (-1)(-1) = 1
Thus any power of i must be equal to 1, i_i-1 or -i_i. For instance,
              i^{13} = (i^2)^6 \cdot i^2 = (-1)^6 \cdot i = i
               i^6 = (i^2)^3 = (-1)^3 = -1 etc.
```

With a view to develop algebra of **complex numbers**, we state a few definitions. The symbols *a*,*b*,*c*,*d*,*k*, where used, represent real numbers.

$$a = c \ b = d.$$

 $(a + di) = (a + c) + (b + d)i$
 bi
 $= (a + bi) + [-(c + di)]$
 $= a + bi + (-c - di)$
 $= (a - c) + (b - d)i$
 $ac + adi + bci + bdi = (ac - bd) + (ad + bc)i.$
plex Numbers: Complex numbers of the form (a + bi) and

d (a - bi) which have the same real parts and whose imaginary parts differ in sign only, are called conjugates of each other. Thus 5 + 4*i* and 5 - 4*i*, -2 + 3*i* and $-2 - 3i - \sqrt{5}i$ and $\sqrt{5}i$ are three pairs of

- i) $(a,b) = (c,d) \iff a = c \land b = d$.
- ii) (a, b) + (c, d) = (a + c, b + d)
- iii) If k is any real number, then k(a, b) = (ka, kb)
- iv) (a, b) (c, d) = (ac bd, ad + bc)

Then C is called the set of *complex numbers*. It is easy to sec that (a, b) - (c, d)= (a - c, b - d)

Properties (1), (2) and (4) respectively define equality, sum and product of two complex numbers. Property (3) defines the product of a real number and a complex number.

Example 1: Find the sum, difference and product of the complex numbers (8, 9) and (5, –6)

Solution: Sum = (8 + 5, 9 – 6) = (13, 3) Difference = (8 - 5, 9 - (-6)) = (3, 15)= (8.5 - (9)(-6), 9.5 + (-6) 8)Product = (40 + 54, 45 - 48) = (94, -3)

1.4.3 Properties of the Fundamental Operations on Complex Numbers

It can be easily verified that the set *C* satisfies all the field axioms i.e., it possesses the properties 1(i to v), 2(vi to x) and 3(xi) of Art. 1.3.

By way of explanation of some points we observe as follows:-

- The additive identity in *C* is (0, 0). i)
- Every complex number (a, b) has the additive inverse ii) (-a, -b) i.e., (a, b) + (-a, -b) = (0, 0).
- iii) The multiplicative identity is (1, 0) i.e., (a, b).(1, 0) = (a.1 - b.0, b.1 + a.0) = (a, b).= (1, 0) (a, b)
- Every non-zero complex number {i.e., number not equal to (0, 0)} has a multiplicative inverse.

16

The multiplicative inverse of (*a*, *b*) is $\left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$

version: 1.1

$$(a,b)\left(\frac{a}{a^2}\right)$$

V) $(a, b)[(c, d) \pm (e, f)] = (a, b)(c, d) \pm (a, b)(e, f)$

Note: The set *C* of complex numbers does not satisfy the order axioms. In fact there is no sense in saying that one complex number is greater or less than another.

1.4.4 A Special Subset of C

of each element is zero. i) iii) $(a, 0) \times (c, 0) = (ac, 0)$

iv)

number a i.e., we postulate: (a, 0) = a

```
If we set (0, 1) = i
terms of i. For example
            (a, b) = (a, 0) + (0, b)
```

$$\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2} = (1, 0), \text{ the identity element}$$
$$= \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)(a,b)$$

We consider a subset of C whose elements are of the form (a, 0) i.e., second component

Let (a, 0), (c, 0) be two elements of this subset. Then (a, 0) + (c, 0) = (a + c, 0)ii) k(a, 0) = (ka, 0)

Multiplicative inverse of (*a*, 0) is $\left(\frac{1}{a}, 0\right)$, $a \neq 0$.

Notice that the results are the same as we should have obtained if we had operated on the real numbers a and c ignoring the second component of each ordered pair i.e., 0 which has played no part in the above calculations.

On account of this special feature we identify the complex number (a, 0) with the real

(1) Now consider (0, 1) $(0, 1) \cdot (0, 1) = (-1, 0)$ = -1 (by (1) above). (2) then $(0, 1)^2 = (0, 1)(0, 1) = i \cdot i = i^2 = -1$ We are now in a position to write every complex number given as an ordered pair, in (def. of addition)

This

other.

1.

2.

3.

4.

5.

i)

i)

= a(1, 0) + b(0, 1)

= a.1 + bi

= a + ib

1. Number Systems

16. Separate into real and imaginary parts (write as a simple complex number): -

i)
$$\frac{2-7i}{4+5i}$$

1.5 The Real Line

Therefore, we postulate: the real numbers in such a way that:i) ii) point.

1.5.1 The Real Plane or The Coordinate Plane

is the set: $A \times B = \{(x, y) \mid x \in A \land y \in B\}$

version: 1.1

Thus
$$(a, b) = a + ib$$
 where $i^2 = -1$
This result enables us to convert any Complex number given in one notation into the f .
Exercise 1.2
Verify the addition properties of complex numbers.
Verify the multiplication properties of the complex numbers.
Verify the distributive law of complex numbers.
Verify the distributive law of complex numbers.
 $(a, b)[(c, d) + (e, f)] = (a, b)(c, d) + (a, b)(e, f)$
 $(Hint: Simplify each side separately)$
Simplify the following:
i) i^9 ii) i^{14} iii) $(-i)^{19}$ iv) $(-\frac{21}{2})$
Write in terms of i
i) $\sqrt{-1b}$ ii) $\sqrt{-5}$ iii) $\sqrt{\frac{-16}{25}}$ iv) $\sqrt{\frac{1}{-4}}$
Simplify the following:
 $(7, 9) + (3, -5)$ **7.** $(8, -5) - (-7, 4)$ **8.** $(2, 6)(3, 7)$
 $(5 - 4)(-3 - 2)$ **10.** $(0, 2)(0, 5)$ **11.** $(2, 6) : (2, 7)$

(by (1) and (2) above)

(7, 9 6. (5, -4)(-3, -2) **10.** (0, 3)(0, 5) **11.** $(2, 6) \div (3, 7)$. 9.

12. $(5, -4) \div (-3, -8)$ (Hint for 11: $\frac{(2,6)}{(3,7)} = \frac{2+6i}{3+7i} \times \frac{3-7i}{3-7i}$ etc.)

- **13.** Prove that the sum as well as the product of any two conjugate complex numbers is a real number.
- **14.** Find the multiplicative inverse of each of the following numbers:

15.	i) (–4, 7) Factorize the followin	ii) ng:	$\left(\sqrt{2}, -\sqrt{5}\right)$	iii)	(1, 0)
	i) $a^2 + 4b^2$	ii)	$9a^2 + 16b^2$	iii)	$3x^2 + 3y^2$

ii)
$$\frac{(-2+3i)^2}{(1+i)}$$
 iii) $\frac{i}{1+i}$

$$-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8$$

 $O A X$
Fig. (1)

In Fig.(1), let X' X be a line. We represent the number 0 by a point O (called the origin) of the line. Let |OA| represents a unit length. According to this unit, positive numbers are represented on this line by points to the right of O and negative numbers by points to the left of O. It is easy to visualize that all +ve and –ve rational numbers are represented on this line. What about the irrational numbers?

The fact is that all the irrational numbers are also represented by points of the line.

Postulate: A (1 - 1) correspondence can be established between the points of a line ℓ and

The number 0 corresponds to a point *O* of the line.

The number 1 corresponds to a point *A* of the line.

iii) If x_1 , x_2 are the numbers corresponding to two points P_1 , P_2 , then the distance between P_1 and P_2 will be $|x_1 - x_2|$.

It is evident that the above correspondence will be such that corresponding to any real number there will be one and only one point on the line and vice versa.

When a (1 - 1) correspondence between the points of a line x'x and the real numbers has been established in the manner described above, the line is called the **real line** and the real number, say x, corresponding to any point P of the line is called the **coordinate** of the

We know that the *cartesian product* of two non-empty sets A and B, denoted by $A \times B$,

The members of a *cartesian* product are **ordered**

pairs.

The cartesian product $\Re \times \Re$ where \Re is the set of real numbers is called the **cartesian plane**.

By taking two perpendicular lines x'ox and y'oy as coordinate axes on a geometrical plane and choosing x a convenient unit of distance, elements of $\Re \times \Re$ can be represented on the plane in such a way that there is *a* (1–1) correspondence between the elements of $\Re \times \Re$ and points of the plane.

Fig. (2)

C(-4,3)

D(-3,-4)

The geometrical plane on which coordinate system has been specified is called the real plane or the coordinate plane.

Ordinarily we do not distinguish between the Cartesian plane $\Re \times \Re$ and the coordinate plane whose points correspond to or represent the elements of $\Re \times \Re$.

If a point A of the coordinate plane corresponds to the ordered pair (a, b) then a, b are called the **coordinates** of *A*. *a* is called the x - coordinate or **abscissa** and b is called the y - coordinate or **ordinate**.

In the figure shown above, the coordinates of the points*B*, *C*, *D* and *E* are (3, 2), (–4, 3), (-3, -4) and (5, -4) respectively.

Corresponding to every ordered pair $(a, b) \in \Re \times \Re$ there is one and only one point in the plane and corresponding to every point in the plane there is one and only one ordered pair (a, b) in $\Re \times \Re$.

There is thus a (1 - 1) correspondence between $\Re \times \Re$ and the plane.

1.6 Geometrical Representation of Complex Numbers The Complex Plane

We have seen that there is a (1–1) correspondence between the elements (ordered pairs) of the Cartesian plane $\Re \times \Re$ and the complex numbers. Therefore, there is a (1– 1) correspondence between the points of the coordinate plane and the complex numbers. We can, therefore, represent complex numbers by points of the coordinate plane. In this representation every complex number will be represented by one and only one point of

B(3,2)

E(5,-4)

1. Number Systems

the coordinate plane and every point of the plane will represent one and only one complex number. The components of the complex number will be the coordinates of the point representing it. In this representation the *x*-axis is called the real axis and the *y*-axis is called the **imaginary axis**. The coordinate plane itself is called the **complex plane** or **z** – **plane**. By way of illustration a number of complex numbers have been shown in figure 3.

represent imaginary numbers.

of the complex number *a* + *ib*.

In the figure $\overline{MA} \perp \overrightarrow{ox}$

 $\therefore \overline{OM} = x, \ \overline{MA} = y$

by Pythagoras theorem,

 $\left|\overline{OA}\right|^2 = \left|\overline{OM}\right|^2 + \left|\overline{MA}\right|^2$ $\therefore \left| \overline{OA} \right| = \sqrt{x^2 + y^2}$

Thus \overline{OA} represents the modulus of x + iy. In other words: **The modulus of a complex** number is the distance from the origin of the point representing the number.

eLearn.Punjab

1. Number Systems

The modulus of a complex number is generally denoted as: |x + iy| or |(x, y)|. For convenience, a complex number is denoted by z.

If z = x + iy = (x, y), then $\left|z\right| = \sqrt{x^2 + y^2}$ **Example 1:** Find moduli of the following complex numbers : (i) $1 - i\sqrt{3}$ (ii) 3 (iii) –5*i* (iv) 3 + 4*i* Solution:

Let $z = 1 - i\sqrt{3}$ ii) Let z = 3i) or $z = 1 + i(-\sqrt{3})$ or *z* = 3 + 0.*i*

$$\therefore |z| = \sqrt{(1)^2 + (-\sqrt{3})^2} \qquad \qquad \therefore |z| = \sqrt{(3)^2 + (0)^2} = 3$$

$$= \sqrt{1+3} = 2$$

iii) Let $z = -5i$ iv) Let $z = 3 + 4i$
or $z = 0 + (-5)i$ $\therefore |z| = \sqrt{(3)^2 + (4)^2}$

$$\therefore \left| z \right| = \sqrt{0^2 + (-5)^2} = 5$$

Theorems: $\forall z, z_1, z_2 \in C$,

ii) = z = zi) $|-z| = |z| = |\overline{z}| = |-\overline{z}|$ $iii) \quad z\overline{z} = \left|z\right|^2$ iv) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

v)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$$
 vi) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Proof :(i): Let z = a + ib,

So,
$$-z = -a - ib$$
,

$$\therefore |-z| = \sqrt{(-a)}$$

$$|z| = \sqrt{a^{2} + a^{2} + a^{2$$

(ii)

$$\overline{z} = a + ib = z$$
(iii) Let $z = a + ib$ so that $\overline{z} = a - ib$
 $\therefore z.\overline{z} = (a + ib)(a - ib)$
 $= a^2 - iab + iab - i^2b^2$
 $= a^2 - (-1)b^2$
 $= a^2 + b^2 = |z|^2$
(iv) Let $z_1 = a + ib$ and $z_2 = c + id$, then
 $z_1 + z_2 = (a + ib) + (c + id)$
 $= (a + c) + i(b + d)$
so, $\overline{z_1 + z_2} = \overline{(a + c) + i(b + d)}$ (Taking conjugate on both sides)
 $= (a + c) - i(b + d)$
 $= (a - ib) + (c - id) = \overline{z_1} + \overline{z_2}$
(v) Let $z_1 = a + ib$ and $z_2 = c + id$, where $z_2 \neq 0$, then
 $\frac{z_1}{z_2} = \frac{a + ib}{c + id}$

23

2

version: 1.1

22

$$ib, \overline{z} = a - ib$$
 and $-\overline{z} = -a + ib$

$$\frac{(1)}{(1)} = \sqrt{a^2 + b^2}$$

$$a^{2} + (b)^{2} = \sqrt{a^{2} + b^{2}}$$
 (3)

$$\overline{(4)}^{2} = \sqrt{a^{2} + b^{2}}$$

, (3) and (4) we conclude that

$$|-z| = |z| = |\overline{z}| = |-\overline{z}|$$

b
$$a - ib$$

Taking conjugate again of both sides, we have

(1)

(2)

1. Number Systems

(vii) Algebraic proof of this part is tedius. Therefore, we prove it geometrically.

$$= \frac{a+ib}{c+id} \times \frac{c-id}{c-id}$$
 (Note this step)

$$= \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$

$$\therefore \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{ac+bd}{c^2+d^2}} + i\frac{bc-ad}{c^2+d^2}$$

$$= \frac{ac+bd}{c^2+d^2} - i\frac{bc-ad}{c^2+d^2}$$

Now $\frac{\overline{z_1}}{\overline{z_2}} = \overline{\frac{a+ib}{c+id}} = \frac{a-ib}{c-id}$

$$= \frac{a-ib}{c-id} \times \frac{c+id}{c+id}$$

$$= \frac{(ac+bd)-i(bc-ad)}{c^2+d^2}$$

$$= \frac{ac+bd}{c^2+d^2} - i\frac{bc-ad}{c^2+d^2}$$

From (1) and (2), we have

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
(vi) Let $z_1 = a + ib \text{ and } z_2 = c + id$, then $|z_1.z_2| = |(a + ib)(c + id)|$
 $= |(ac - bd) + (ad + bc)i|$
 $= \sqrt{(ac - bd)^2 + (ad + bc)^2}$
 $= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}$
 $= \sqrt{(a^2 + b^2)(c^2 + d^2)}$
 $= |z_1|.|z_2|$

This result may be stated thus: -

The modulus of the product of two complex numbers is equal to the product of their moduli.

version: 1.1

24

In the figure point *A* represents $z_1 = a + ib$ and point *C* represents $z_2 = c + id$. We complete the parallelogram *OABC*. From the figure, it is evident that coordinates of *B* are (a + c, b + d), therefore, *B* represents

25

 $z_1 + z_2 = (a + c) + (b + d)i$ and $|\overline{OB}| = |z_1 + z_2|$. Also $|\overline{OA}| = |z_1|$, $|\overline{AB}| = |\overline{OC}| = |z_2|$. In the $\triangle OAB$; OA + AB > OB ($OA = m\overline{OA}$ etc.) $\therefore |z_1| + |z_2| > |z_1 + z_2|$ (1) Also in the same triangle, *OA* – *AB* < *OB* $|z_1 + z_2|$ (2) Combining (1) and (2), we have $|z_1| - |z_2| < |z_1 + z_2| < |z_1| + |z_2|$ (3)

$$|z_1| - |z_2| <$$

eLearn.Punjab

1. Number Systems

which gives the required results with inequality signs.

Results with equality signs will hold when the points A and C representing z_1 and z_2

become collinear with *B*. This will be so when $\frac{a}{b} = \frac{c}{d}$ (see fig (6)).

The second part of result (vii) namely

 $|z_1 + z_2| \le |z_1| + |z_2|$

is analogue of the triangular inequality*. In words, it may be stated thus: -The modulus of the sum of two complex numbers is less than or equal to the sum of the moduli of the numbers.

26

0

Fig (6)

Example 2: If $z_1 = 2 + i$, $z_2 = 3 - 2i$, $z_3 = 1 + 3i$ then express $\frac{z_1 z_3}{z_2}$ in the form $a + ib^2$ (Conjugate of a complex number z is denoted as \overline{z})

Solution:

 $(\overline{2+i})(\overline{1+3i}) =$ (2-i)(1-3i)3 - 2i3 - 2i

version: 1.1

Example 3: Show tha **Solution:** Let $z_1 = a + bi$, $\overline{z_1 z_2} = \overline{(c_1)^2}$ =(a $z_1.z_2 = (a$ =(a=(a $\overline{z_1}.\overline{z_2} = \overline{(a + a)}$ =(a - a)=(ac)

Thus from (1) and (2) we have, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$

of z. Hence $x + iy = r\cos \theta$

where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1\frac{y}{x}}$ Equation (i) is called the polar form of the complex number *z*.

1. Number Systems

$$=\frac{(2-3)+(-6-1)i}{3-2i} = \frac{-1-7i}{3-2i}$$
$$=\frac{(-1-7i)(3+2i)}{(3-2i)(3+2i)}$$
$$=\frac{(-3+14)+(-2-21)i}{3^2+2^2} = \frac{11}{13} - \frac{23}{13}i$$

$$\text{at, } \forall z_1, z_2 \in C, \ \overline{z_1 \ z_2} = \overline{z_1} \ \overline{z_2}$$

$$(a + bi), \quad z_2 = c + di$$

$$(a + bi)(c + di) = (ac - bd)(ad + bc)i$$

$$(ac - bd) - (ad + bc)i$$

$$(a + bi) = (c + di)$$

$$(c - di)$$

$$(c - bd) + (-ad - bc)i$$

$$(c + di)$$

$$(bi) (c - di)$$

$$(-bd) + (-ad - bc)i$$

Polar form of a Complex number: Consider adjoining diagram representing the complex number z = x + iy. From the diagram, we see that $x = r\cos\theta$ and $y = r\sin\theta$ where r = |z| and θ is called argument

27

$$s\theta + rsin\theta$$

....(i)

(1)

^{*}In any triangle the sum of the lengths of any two sides is greater than the length of the third side and difference of the lengths of any two sides is less than the length of the third side.

1. Number Systems	

ii) Let
$$x_1 + iy_1 = r_1 \cos\theta_1 + r_1 \sin\theta_1$$
 and $x_2 + iy_2 = r_2 \cos\theta_2 + r_2 \sin\theta_2$ then,

$$\left(\frac{x_1 + iy_1}{x_2 + iy_2}\right)^n = \left(\frac{r_1 \cos\theta_1 + r_1 i \sin\theta_1}{r_2 \cos\theta_2 + r_2 i \sin\theta_2}\right)^n = \frac{r_1^n (\cos\theta_1 + i \sin\theta_1)^n}{r_2^n (\cos\theta_2 + i \sin\theta_2)^n}$$

$$= \frac{r_1^n}{r_2^n} (\cos\theta_1 + i \sin\theta_1)^n (\cos\theta_2 + i \sin\theta_2)^{-n}$$

$$= \frac{r_1^n}{r_2^n} (\cos\theta_1 + i \sin\theta_1) (\cos(-n\theta)_2 + i \sin(-n\theta_2)),$$
(By De Moivre's Theorem)

$$= \frac{r_1^n}{r_2^n} (\cos n\theta_1 + i \sin n\theta_1) (\cos n\theta_2 - i \sin n\theta_2), (\cos(-\theta) = \cos\theta)$$

$$\sin(-\theta) = -\sin\theta)$$

$$= \frac{r_1^n}{r_2^n} [(\cos n\theta_1 \cos n\theta_2 + \sin n\theta_1 \sin n\theta_2)]$$

$$+ i(\sin n\theta_1 \cos n\theta_2 - \cos n\theta_1 \sin n\theta_2)]$$

$$= \frac{r_1^n}{r_2^n} [\cos(n\theta_1 - n\theta_2) + i \sin(n\theta_1 - n\theta_2)] \because \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$
and $\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$

$$= \frac{r_1^n}{r_2^n} [\cos n(\theta_1 - \theta_2) + i \sin n(\theta_1 - \theta_2)]$$

ii) Let
$$x_1 + iy_1 = r_1 \cos\theta_1 + r_1 \sin\theta_1$$
 and $x_2 + iy_2 = r_2 \cos\theta_2 + r_2 \sin\theta_2$ then,

$$\left(\frac{x_1 + iy_1}{x_2 + iy_2}\right)^n = \left(\frac{r_1 \cos\theta_1 + r_1 i \sin\theta_1}{r_2 \cos\theta_2 + r_2 i \sin\theta_2}\right)^n = \frac{r_1^n (\cos\theta_1 + i \sin\theta_1)^n}{r_2^n (\cos\theta_2 + i \sin\theta_2)^n}$$

$$= \frac{r_1^n}{r_2^n} (\cos\theta_1 + i \sin\theta_1)^n (\cos\theta_2 + i \sin\theta_2)^{-n}$$

$$= \frac{r_1^n}{r_2^n} (\cos n\theta_1 + i \sin n\theta_1) (\cos(-n\theta)_2 + i \sin(-n\theta_2)),$$
(By De Moivre's Theorem)

$$= \frac{r_1^n}{r_2^n} (\cos n\theta_1 + i \sin n\theta_1) (\cos n\theta_2 - i \sin n\theta_2), (\cos(-\theta) = \cos\theta)$$

$$\sin(-\theta) = -\sin\theta)$$

$$= \frac{r_1^n}{r_2^n} [(\cos n\theta_1 \cos n\theta_2 + \sin n\theta_1 \sin n\theta_2) + i (\sin n\theta_1 \cos n\theta_2 - \cos n\theta_1 \sin n\theta_2)]$$

$$= \frac{r_1^n}{r_2^n} [\cos(n\theta_1 - n\theta_2) + i \sin(n\theta_1 - n\theta_2)] \because \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$
and $\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$

$$= \frac{r_1^n}{r_2^n} [\cos n(\theta_1 - \theta_2) + i \sin n(\theta_1 - \theta_2)]$$

$$= \frac{r_1^n}{r_2^n} [\cos n(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)]$$

$$= \frac{r_{1}^{n}(\cos \theta_{1} + r_{1} \sin \theta_{1})}{r_{2}\cos \theta_{2} + r_{2}\sin \theta_{1}} = \frac{r_{1}^{n}(\cos \theta_{1} + i \sin \theta_{1})^{n}}{r_{2}^{n}(\cos \theta_{1} + i \sin \theta_{1})^{n}}$$

$$= \frac{r_{1}^{n}(\cos \theta_{1} + i \sin \theta_{1})^{n}(\cos \theta_{2} + i \sin \theta_{2})^{-n}}{r_{2}^{n}(\cos \theta_{1} + i \sin \theta_{1})^{n}(\cos \theta_{2} + i \sin \theta_{2})^{-n}}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}(\cos \theta_{1} + i \sin \theta_{1})(\cos (-n\theta)_{2} + i \sin (-n\theta_{2})),$$
(By De Moivre's Theorem)
$$= \frac{r_{1}^{n}}{r_{2}^{n}}(\cos n\theta_{1} + i \sin n\theta_{1})(\cos n\theta_{2} - i \sin n\theta_{2}), (\cos (-\theta) = \cos \theta)$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}(\cos n\theta_{1} + i \sin n\theta_{1})(\cos n\theta_{2} - i \sin n\theta_{2}), (\cos (-\theta) = \cos \theta)$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}[(\cos n\theta_{1} \cos n\theta_{2} + \sin n\theta_{1} \sin n\theta_{2})]$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}[(\cos n(\theta_{1} - n\theta_{2}) + i \sin (n(\theta_{1} - n\theta_{2}))] \therefore \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}[\cos n(\theta_{1} - \theta_{2}) + i \sin n(\theta_{1} - \theta_{2})]$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}}[\cos n(\theta_{1} - \theta_{2}) + i \sin n(\theta_{1} - \theta_{2})]$$

29

$$x_{1} + iy_{1} = r_{1} \cos\theta_{1} + r_{1} \sin\theta_{1} \text{ and } x_{2} + iy_{2} = r_{2} \cos\theta_{2} + r_{2} \sin\theta_{2} \text{ then,}$$

$$\int_{n}^{n} = \left(\frac{r_{1} \cos\theta_{1} + r_{1} i \sin\theta_{1}}{r_{2} \cos\theta_{2} + r_{2} i \sin\theta_{2}}\right)^{n} = \frac{r_{1}^{n} (\cos\theta_{1} + i \sin\theta_{1})^{n}}{r_{2}^{n} (\cos\theta_{2} + i \sin\theta_{2})^{n}}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1})^{n} (\cos\theta_{2} + i \sin\theta_{2})^{-n}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1}) (\cos(-\theta)_{2} + i \sin(-\theta_{2})),$$
(By De Moivre's Theorem)
$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos n\theta_{1} + i \sin n\theta_{1}) (\cos n\theta_{2} - i \sin n\theta_{2}), (\cos(-\theta) = \cos\theta)$$

$$\sin(-\theta) = -\sin\theta)$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [(\cos n\theta_{1} \cos \theta_{2} + \sin n\theta_{1} \sin \theta_{2})]$$

$$+ i(\sin n\theta_{1} \cos n\theta_{2} - \cos n\theta_{1} \sin \theta_{2})]$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos(n\theta_{1} - n\theta_{2}) + i \sin(n\theta_{1} - n\theta_{2})] \therefore \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$
and $\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos n(\theta_{1} - \theta_{2}) + i \sin n(\theta_{1} - \theta_{2})]$$

$$x_{1} + iy_{1} = r_{1} \cos\theta_{1} + r_{1} \sin\theta_{1} \text{ and } x_{2} + iy_{2} = r_{2} \cos\theta_{2} + r_{2} \sin\theta_{2} \text{ then,}$$

$$\int_{0}^{n} = \left(\frac{r_{1} \cos\theta_{1} + r_{1} i \sin\theta_{1}}{r_{2} \cos\theta_{2} + r_{2} i \sin\theta_{2}}\right)^{n} = \frac{r_{1}^{n} (\cos\theta_{1} + i \sin\theta_{1})^{n}}{r_{2}^{n} (\cos\theta_{2} + i \sin\theta_{2})^{n}}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1})^{n} (\cos\theta_{2} + i \sin\theta_{2})^{-n}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1}) (\cos(-\theta_{2} + i \sin\theta_{2}), (\cos(-\theta_{2} - \theta_{2})), (By De Moivre's Theorem))$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1}) (\cos\theta_{2} - i \sin\theta_{2}), (\cos(-\theta) = \cos\theta)$$

$$\sin(-\theta) = -\sin\theta)$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [(\cos\theta_{1} \cos\theta_{2} + \sin\theta_{1} \sin\theta_{2}) + i(\sin\theta_{1} \cos\theta_{2} - \cos\theta_{1} \sin\theta_{2})]$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos(\theta_{1} - \theta_{2}) + i \sin(\theta_{1} - \theta_{2})] \therefore \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos(\theta_{1} - \theta_{2}) + i \sin(\theta_{1} - \theta_{2})]$$

$$x_{1} + iy_{1} = r_{1} \cos\theta_{1} + r_{1} \sin\theta_{1} \text{ and } x_{2} + iy_{2} = r_{2} \cos\theta_{2} + r_{2} \sin\theta_{2} \text{ then,}$$

$$^{n} = \left(\frac{r_{1} \cos\theta_{1} + r_{1} i \sin\theta_{1}}{r_{2} \cos\theta_{2} + r_{2} i \sin\theta_{2}}\right)^{n} = \frac{r_{1}^{n} (\cos\theta_{1} + i \sin\theta_{1})^{n}}{r_{2}^{n} (\cos\theta_{2} + i \sin\theta_{2})^{n}}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1})^{n} (\cos\theta_{2} + i \sin\theta_{2})^{-n}$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos\theta_{1} + i \sin\theta_{1}) (\cos(-\theta)_{2} + i \sin(-\theta_{2})),$$
(By De Moivre's Theorem)
$$= \frac{r_{1}^{n}}{r_{2}^{n}} (\cos n\theta_{1} + i \sin n\theta_{1}) (\cos n\theta_{2} - i \sin n\theta_{2}), (\cos(-\theta) = \cos\theta)$$

$$\sin(-\theta) = -\sin\theta)$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [(\cos n\theta_{1} \cos n\theta_{2} + \sin n\theta_{1} \sin n\theta_{2})]$$

$$+ i(\sin n\theta_{1} \cos n\theta_{2} - \cos n\theta_{1} \sin n\theta_{2})]$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos((\theta_{1} - \theta_{2})) + i \sin((\theta_{1} - \theta_{2}))] \because \cos((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$= \frac{r_{1}^{n}}{r_{2}^{n}} [\cos((\theta_{1} - \theta_{2})) + i \sin((\theta_{1} - \theta_{2}))]$$

Thus
$$\frac{r_1^n}{r_2^n} \cos n \ (\theta_1 - \theta_2)$$

 $\left(\frac{x_1 + iy_1}{x_2 + iy_2}\right)^n$, $x_2 + iy_2 \neq 0$

where
$$r_1 = \sqrt{x_1^2 + y_1^2}$$
; $\theta_1 = tan^{-1\frac{y_1}{x_1}}$ and $r_2 = \sqrt{x_2^2 + y_2^2}$; $\theta_2 = tan^{-1\frac{y_2}{x_2}}$

Example 4: Express the complex number $1 + i\sqrt{3}$ in polar form.

Solution:

Step-I: Put
$$r\cos\theta = 1$$
 and $r\sin\theta = \sqrt{}$
Step-II: $r^2 = (1)^2 + (\sqrt{3})^2$
 $\Rightarrow r^2 = 1 + 3 = 4 \Rightarrow r = 2$

Step-III: $\theta = \tan^{-1} \frac{\sqrt{3}}{1} = \tan^{-1} \sqrt{3} = 60^{\circ}$

 $1 + i\sqrt{3} = 2\cos 60^\circ + i2\sin 60^\circ$ Thus

De Moivre's Theorem : -

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta, \forall n \in \mathbb{Z}$ Proof of this theorem is beyond the scope of this book.

1.7 To find real and imaginary parts of

i)
$$(x + iy)^n$$
 ii) $\left(\frac{x_1 + iy_1}{x_2 + iy_2}\right)^n$, $x_2 + iy_2 \neq 0$

for *n* = ±1, ±2, ±3, ...

i) Let
$$x = r\cos\theta$$
 and $y = r\sin\theta$, then
 $(x + iy)^n = (r\cos\theta + ir\sin\theta)^n$
 $= (r\cos\theta + ir\sin\theta)^n$
 $= [r(\cos\theta + i\sin\theta)]^n$
 $= r^n(\cos\theta + i\sin\theta)^n$
 $= r^n(\cos n\theta + i\sin n\theta)$ (By De Moivre's Theorem)
 $= r^n \cos n\theta + ir^n \sin n\theta$

Thus $r^n \cos n\theta$ and $r^n \sin n\theta$ are respectively the real and imaginary parts of $(x + iy)^n$.

Where
$$r = \sqrt{x^2 + y^2}$$
 and $ta = tan^{-1} \frac{x}{y}$.

version: 1.1

) and $\frac{r_1^n}{r_2^n}sinn(\theta_1 - \theta_2)$ are respectively the real and imaginary parts of

eLearn.Punjab

1. Number Systems

$$= (\cos(3))$$

$$=\left(\frac{1}{2}+\frac{\sqrt{2}}{2}\right)$$

Thus
$$\frac{-1}{2}$$
, $\frac{\sqrt{3}}{2}$ are re

2 + 3ii)

V)

4. Prove that
$$\overline{z} = z$$

i)
$$5 + 2\sqrt{-4}$$

iii)
$$\frac{2}{\sqrt{5}+\sqrt{-8}}$$

6. Show that $\forall z \in C$

i)
$$(\sqrt{3} + i)^3$$
 ii) $(\frac{1 - \sqrt{3} i}{1 + \sqrt{3} i})^5$

Solution:

i) Let
$$r\cos\theta = \sqrt{3}$$
 and $r\sin\theta = 1$ where

$$r^{2} = (\sqrt{3})^{2} + 1^{2} \text{ or } r = \sqrt{3+1} = 2 \text{ and } \theta = \tan^{-1} \frac{1}{\sqrt{3}} = 30^{\circ}$$

So, $(\sqrt{3} + i)^{3} = (r\cos\theta + ir\sin\theta)^{3}$
 $= r^{3}(\cos 3\theta + i\sin 3\theta)$ (By De Moivre's Theorem)
 $= 2^{3}(\cos 90^{\circ} + i\sin 90^{\circ})$
 $= 8(0 + i.1)$
 $= 8i$

Thus 0 and 8 are respectively real and imaginary Parts of $(\sqrt{3} + i)^3$. and $r_1 \sin \theta_1 = -\sqrt{3}$ Let $r_1 \cos\theta_1 = 1$ ii) $\Rightarrow r_1 = \sqrt{(1)^2 + (-\sqrt{3})^2} = \sqrt{1+3} = 2 \text{ and } \theta_1 = \tan^{-1} - \frac{\sqrt{3}}{1} - 60^\circ$ Also Let $r_2 \cos \theta_2 = 1$ and $r_2 \sin \theta_2 = \sqrt{3}$ $\Rightarrow r_2 = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2 \text{ and } \theta_2 \tan^{-1} \frac{\sqrt{3}}{1} = 60^\circ$ So, $\left(\frac{1-\sqrt{3}i}{1+\sqrt{3}i}\right)^5 = \left[\frac{2(\cos(-60^\circ)+i\sin(-60^\circ))}{2(\cos(60^\circ)+i\sin(60^\circ))}\right]^5$ $=\frac{\left(\cos(-60^{\circ})+i\sin(-60^{\circ})\right)^{5}}{\left(\cos(60^{\circ})+i\sin(60^{\circ})\right)^{5}}$

 $= (\cos(-60^{\circ}) + i\sin(-60^{\circ}))^{5} (\cos(60^{\circ}) + i\sin(60^{\circ}))^{-5}$ $= (\cos(-300^{\circ}) + i\sin(-300^{\circ}))(\cos(-300^{\circ}) + i\sin(-300^{\circ}))$

version: 1.1

 $(300^\circ) - i\sin(300^\circ)) \left(\cos(300^\circ) - i\sin(300^\circ)\right) \quad \because \cos(-\theta) = \cos\theta$ and $\sin(-\theta) = -\sin\theta$

$$\left(\frac{\overline{3}}{2}i\right)^2 = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$$

espectively real and imaginary parts of $\left(\frac{1-\sqrt{3} i}{1+\sqrt{3} i}\right)^3$

Exercise 1.3

1. Graph the following numbers on the complex plane: -

ii) 2-3i iii) -2-3iiv) -2 + 3i-6 vi) *i* vii) $\frac{3}{5} - \frac{4}{5}i$ viii) -5 - 6i

icative inverse of each of the following numbers: -

ii) 1-2i iii) -3-5i iv) (1, 2)

ii) $(-ai)^4$, $\alpha \in \mathfrak{R}$ iii) i^{-3} iv) i^{-10}

iff z is real.

ressing in the form a + bi

ii)
$$(2+\sqrt{-3})(3+\sqrt{-3})$$

iv)
$$\frac{3}{\sqrt{6}-\sqrt{-12}}$$

i) $z^2 - \overline{z}^2$ is a real number. ii) $(z - \overline{z})^2$ is a real number.

7. Simplify the following

i)
$$\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^{3}$$

ii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^{-2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$
iii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^{-2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$
iv) $(a+bi)^{2}$
v) $(a+bi)^{-2}$
vi) $(a+bi)^{3}$
vii) $(3-\sqrt{-4})^{-3}$