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3.1 INTRODUCTION
When the derived function (or differential coefficient) of a function is known, then The tangent line is drawn to "
the aim to find the function itself can be achieved. The technique or method to find such the graph of y ) fx) at Plx, flx) ahd A Qx+ox,f fx + 0x))
a function whose derivative is given involves the inverse process of differentiation, called MP is the ordlnate of P, that s, b | ‘ N
anti-derivation or integration. We use differentials of variables while applying method MP = fix). (see Fig. 3.1) ./ () T Ty | o
of substitution in integrating process. Before the further study of anti-derivation, we first | Le’F dx be small number, then the ‘““-—-/—/7”": 'R
discuss the differentials of variables. point Nis located at x + 5x'on the x-axis. | i
Let the vertical line through N cut the 5 | Sx o
tangent line at T and the graph of fat Q. «~ 0 M N(x+6x) y
Then the point Q is (x + 8x, f(x + 8x)), SO Figure : 3.1
Let f be a differentiable function in the interval a < x < b, defined as y = f(x), then dx =8x = PR
Sy = f(x+8x) — f(x) and dy=RQ=RT+TQ
L0y . f(x+OX)-f(x) _ : _ N _RT
and ﬁiﬁ"og = (QTO T = f'(x), that is =tan ¢pdx + TQ ( tanq)_ﬁj
d :
d_i =f(x) where ¢ is the angle which the tangent PT makes with the positive direction of the x-axis.
S or oy=f'(x)dx+TQ (.. tan @dx = f’(x))
We know that before the limit is reached, 5—1 differs from f* (x) by a very small real =  Sy=dy+TQ
number €. We see that 8y is the rise of f for a change &x in x at x where as dy is the rise of the
Sy . tangent line at P corresponding to same change 6x in x.
Let g:f'(x)Jfg where & is very small The importance of the differential is obvious from the figure 3.1. As 8x approaches 0,
or Sy = f'(x)dx+e Ox (i the value of dy gets closer and closer to that of 6y, so for small values of &x,
dy = dy
The term f'(x)ox being more important than the term € 8x is called the differential of ,
the dependent \j/fa(r;ca)blz ang is denoter)d by dy (or df) K of dy =1 (ax [ dy=1"(x)da] ()
P y ya We know that 8y = f(x + 8x) — f(x)
Thus dy = f'(x)dx (i) flox + 8x) = f(x) + Sy
As c.lx = (x).’éx = gl)é'x, SO | | | But 3y ~ dy, so
the dlffere.ntlalnofx is denoted by dx and is defined by the relation dx = dx. flx + 8x) = fix) + dy V)
The equation (ii) becomes floc+ 8%) = fx) + f* (x)dx (vi)
dy=f"(x)dx (iii)
Note. Instead of dy, we can write df, that is, df = f “ (x) dx where f‘(x) being coefficient of
differential is called differential coefficient.
version: 1.1 version: 1.1
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Example: Find 5y and dy of the function defined as
f(x)=x?, whenx=2and dx=0.01

Solution: As f(x) = x?, so f’(x) = 2x
3y = flx + 8x) — flx) = (x + 3x)* — x?
= 2x 6x + (8x)? = 2x dx + (dx)?
Thus f(2 + 0.01) — f{2) = 2(2) (0.01) + (0.01)?
=0.04 + 0.0001 = 0.0401, that is
dy = 0.0401 when x =2 and 4x = dx = 0.01

Alsody =f"(x) dx

=2(2)x(0.01)=0.04 (" f'(x)=2x,x=2and dx=0.01)
Thus 8y — dy = 0.0401 — 0.04 = 0.0001.

(. dx =dx)

We explain the process in the following example.

d
Example: Using differentials find d_y when y_ Inx=Inc
X X

Solution: Finding differentials of both sides of the given equation, we get

d[l—lnx}:d[lnc]:o

X

using d(f + g) = df £ dg, we have

d[l}—d(lnx):0:>£[y.l} - Lix=o
X dx|” x X

Using d(fg) = fdg + gdf, we get

yd(ljJrldy—ldx: 0

X X X

X (—dexj + la’y —ldx =0= ldy = la’x + lzdx
x x x x x x

O

version: 1.1
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or ldy:(l+%jdx=(x+2yjdx:l(x-lryjdx
X X X X x\ X

:>dy:(x+yjdx

X
dy _ xty e gy £
Thus I = » [ dy=f (x)dx]

Use of differentials for approximation is explained in the following examples.

Example 1:  Use differentials to approximate the value of \/17.

Solution: Let fix) = Vx
Then f(x + 8x) = Vx+dx

As the nearest perfect square root to 17 is 16, so we take x = 16
and éx=dx =1
Theny=£(16)= V6 =4
Using f(x + 8x) = f(x) + dy
~ flx) + f' (x) dx. we have

NI [.'.f,(x)zleﬁj

! 4+l
2x4 8

f16+1)~ f(16)+ :

S‘

~ 4 +

= 4.125

Hence /17 ~4.125

Example 2: Use differentials to approximate the value of /8.6

Solution: Let f(x)=3/x then

y+6y = f(x+6x) = Ix+6x = Yx+dx (- S6x=dx) and f'(x)= 12

version: 1.1
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As the nearest perfect cube root to 8.6 is 8, so we take x =8 Solution: Let x be the side and V be the volume of the cube, then
and dx = 0.6, then V=x and dV = (3x?) dx
Taking x = 20 (cm) and dx = 0.12 (cm), we get
V=1[3(20)%] (0.12) =12 12)=144 i
f(g):%/§:2 and  £7(8) = 12 _ 1 :L, d [3(. O)](.O ) 00 x (O .) (cubl.ccr.n) N |
3(8): 3x4 12 The error 144 cubic cm in volume calculation of a cube is either positive or negative.

so dy = f'(x)dx = éx(0.6) = 0.05

Using  f(x+6x) = f(x)+dy, wehave
1. Find 8y and dy in the following cases:

f(8+0.6) = f(8)+0.05 (i) y=x2-1 when x changes from 3 to 3.02
=2+0.05 = 2.05 (i) y=x>+2x when x changes from 2 to 1.8
But using calculator, we find that /8.6 is approximately equal to 2.0488. (i) y=+x when x changes from 4 to 4.41
Example 3: Using differentials, find the approximate value of sin 46° 2.  Using differentials find % and Z—; in the following equations
Solution: Lety =sinx, then (i) xy+x=4 (i) x*+2y2°=16
y + 8y = sin (x + 6x) = sin (x + dx) (6x = dx) (i)  x*+y? =xy? (iv) xy—Inx=c
- 3.  Use differentials to approximate the values of
We takex=45°=Z and dx= 1° =0.01745 iy 17 (i) (315
J (iii) cos 29° (iv) sin619°
Hence dy = cos x dx ('.’a(sinx) = cosxj 4,  Find the approximate increase in the volume of a cube if the length of its each edge
changes from 5 to 5.02.
1 5.  Find the approximate increase in the area of a circular disc if its diameter is ?
~ (cos 45°)(0.01745) = ﬁ(o.oms)
< 0.7071 (0.01745) 3.2 INTEGRATION AS ANTI - DERIVATIVE
= 001934 (INVERSE OF DERIVATIVE)
Using f (x + dx) = f(x) + dy we have o . . . .
Sin (46%) ~ sin 45° + dy ~ 0.7071 + 0.01234 = 0.71944 In chapter 2, we have been finding the derived function (differential
~ 0.7194 coefficient) of a given function. Now we consider the reverse (or inverse) process

i.e. we find a function when its derivative is known. In other words we can say that if
¢'(x) = flx), then ¢(x) is called an anti-derivative or an integral of f(x). For example, an
anti-derivative of f(x) = 3x? is ¢(x) = x* because ¢'(x) = d_ (%) = 3x? = f(x).

X

Using calculator, we find sin 46° is approximately equal to 0.71934.

Example 4: The side of a cube is measured to be 20 cm with a maximum error of 12 cm
in its measurement. Find the maximum error in the calculated volume of the cube.

version: 1.1 version: 1.1
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The inverse process of differentiation i.e. the process of finding such a function whose
derivative is given is called anti-differentiation or integration.

While finding the derivatives of the expressions suchas x> +x, x*+x+5, x*+x-3
etc., we see that the derivative of each of them is 2x + 1, that is,

i(x2+x)=i(x2+x+5)=i(x2+x—3)=2x+'|
dx dx dx
Now if f(x) = 2x + 1 (0)

Then ¢(x) = x? + x

is not only anti-derivative of (i). But all anti-derivatives of flx) = 2x + 1 are included in
x? + x + cwhere cis the arbitrary constant which can be found if further information is given.

As c is not definite, so ¢(x) + ¢ is called the indefinite integral of f(x) , that is,

[r@de=a ) +c (i)

In (ii), fix) is called integrand and c is named as the constant of integration.
The symbol _[ dx indicates that integrand is to be integrated w.r.t. x.

Note that di and ,[ dx are inverse operations of each other.
X

We give below a list of standard formulae for anti-derivatives which can be obtained
from the corresponding formulae for derivatives:
General Form Simple Form
In formulae 1-7 and 10-14,a =0

n+l n+l
MJrc,(n;t—l) [x"de=2
a(n+1) n+1

1. I(aerb)ndx: +c(n#-1)

2. Isin(ax+b)dx=—lcos(ax+b)+c [ sinxdx =—cosx +c

a

3. Icos(ax+b)dx:lsin(ax+b)+c [ cos xdx =sinx+c

a

4., fsecz(ax+b)dx=ltan(ax+b)+c [sec? xdx =tanx + ¢

a

3. Integration elLearn.Punjab
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5. Icosecz(ax+b)dx:—lcot(ax+b)+c [cosec® xdx =—cotx +c¢

a

6. Jsec(ax+b)tan(ax+b)dx:lsec(ax+b)+c fsecxtanxdxzsecx+c

a

7. fcosec(ax+b)cot(ax+b)dx=—lcosec(ax+b)+c Jcosecx cot x dx =—cosec x +c¢

a

8. fe“+"dx=%xe’m”+c(/1¢0) Iexdx: e +c

9. Ialﬁ"dx:;.a’lx“# c.(a)O,a;tl,ﬂ;tO)
Alna

[a*dx =ﬁ.ax+ c.(a)O,a # 1)

Ildx:ln|x|+c,x¢ 0
X

1 .
10, jax+bdx—j(ax+b) dx

=lln|ax+b|+c,(ax+b * O)
a

11. ftan(ax + b)dx = lln|sec(ax + b)| +c [ tan xdx = ln|sec(x)| +c

a

:—lln|cos(ax+b)|+c :—ln|cosx|+c
a

12. fcot(ax + b)dx = lln|sin(ax + b)| +c

[cotxdx =In |Sinx| +c
a

13. fseC(ax—Fb)dx=lln|sec(ax+b)+tan(ax+b)|+c ['secxdx = ln|secx + tanX| +c

a

14.

fcosec(ax + b)dx = lln|cosec(ax + b) - cot(ax + b)| +c [cosecxdx = ln|cosecx - cotx| +c

a

These formulae can be verified by showing that the derivative of the right hand side of
each with respect to x is equal to the corresponding integrand.

Examples:

5+1 6
1. J.XS dx = al +c :x—+C i(lx6j :ldx(x6):l'6x6_l :xs
5+1 6 dx\ 6 6 6

1 R d( -2 PN
2. ——dx= 2dx = v = |=-2—
ekl L o o )
2
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10.

11.

:’i_lz+c=—%+c _ 2.(—%){;‘1:5:&
2
I(2x 1+ 3 dx=(2x+3) " dx ( %[—mn
:%H:%H - é%(@x +3) )
Sererat i o s M s

[cos2xdx = Sin2x +c=lsin2x+c i lsian =li(sin2x)
2 2 dx\ 2 2 dx

—(cos 2x) X2 =cos2x

fsin3xdx —— 3x

+c=—lcos3x+c '.'i(—lcos?:x =—li(cos3x)
3 d 3 3d

X X

d
[ cosec*xdx =—cot x +c ( d—(—cot x) = —(—cosec’x) = co seczxj
X

JSeCS)Cl‘an Sxdx = secdx +c ( di(sec;xn :%(SeCSxtanSX) x5=secS5xtan5x
X
ax+b ax+b
Ieax+bdx: e T (...i(e ]:l(ea)ﬁb Xa):eax+bJ
a dx\ a a
Ax Ax
3% dx = 3 +c i 3 = ! (3’1x(ln3)l)=3’”
Aln3 dx\ AIn3 Aln3
| ! dx:f(ax+b)_1dx d (lln(ax+b) L a= ! )
ax+b dx\ a a ax+b ax+b

:lln(ax+b)+c,(ax+b > O)

a

[ ! 2dx=ln(x+\/x2+a2)+c

X +a

['.'%(ln(x+m))= L[y, ! ><2xj

x+\/x2+a2k 2\/x2+a2

3. Integration elLearn.Punjab
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1 \/x +d° +X |

x+\/x2+a N \/x2+a2

L. The integral of the product of a constant and a function is equal to the product of the
constant and the integral of the function.
In symbols,

jaf(x)dx = aff(x)dx

where g is a constant.

II. Theintegral ofthesum (ordifference)oftwo functionsisequaltothe sum (or difference)
of their integrals.
In symbols,

[[A(x)xA(x)]dx = [fi(x)dx £ [£(x)

Prove that: (i) I[f x] f(x)dx = [f ] + ¢, (n=-1)

n+1

(i) [[/ ()] f(x)dx = nf(x)+e (ftx) > 0)
Proof: 4
(i)  Since o (™) = (n+ 1) [fAx)]" f* (%)
by definition, J(n+1)[ f(x)] f'(x)dx = [ f(x)
(n+ ) [[f ()] £r(x)ax = [£(x)]"
WACT N
n+l

n+1

+ ¢, (by theoremI)

+c¢ where c¢=

or [/ )"/ (x)dx = =D

n+

version: 1.1
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(i)  Since a [In flx)] = T S(x)
dx

fix)

By definition, we have

jf(lx) F(x)dx = mf(x)+e  (£(x)>0)
or j [T £ (x)dx=1n f(x)+c.
Thus we can prove that
M) [xde = X e (n=-1)
’ n+l1
. - "o (ax+b) . B
(i) .(ax+b) dx = Y + c (@#0,n=-1)
(iii) .ldx = In |x| + c
X
(iv) l-l-b dx = 1 In |ax+b| + ¢, (a#0)
v ax a
Examples: Evaluate
(i) _.(x+1)(x—3)dx (i) ..xx/x2 —1dx
. . . 1
(i) | xizdx, (x>-2) (iv) _mdx, (x>0)
- dx . sinx+cos’x
U x+1-+/x (x>0) M) cos’x sin x dx
(vii) .% dx, (cos 2x¢—1)
¢ COS 24X
Solution:

(i) I(x+1)(x—3) dx = I(x2—2x—3) dx
= szdx— ij dx—3j1 dx (BytheoremsIand II)

3
X

3

2

=X 2 X _3x+e
2

n+l

+ ¢, and

( [x"dx = al

version: 1.1
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(i)

(iii)

(iv)

(V)

1 0+1
= §x3—x2—3x+c [1dx=[x"dx= xl + czj

Ixm dx :J‘(xz—l);x dx
- L ))xg £(x)

SIEF ) thens () =26 x=27' ()

(If f(x)=x"—1.

=%[f(3x)]2+c:l(x2+l)2+c
2
X x+2-2
fx+2dx=J ) dx, (x>-2)
:j(l—xizjdx = [dx=2[(x+2)".1 dx = x=21In(x+2)+c
1 11
f\/;(\/;+l) dx = Jm ﬁdx (x>0)
JLA@] 2w )= i ()=
=[] () ds or%=2f'(x)}
=2Inf(x)+c = 2ln(\/;+1)+c
fﬁ’ (x>0)

Rationalizing the denominator, we have

I dx :J x+1+\/;
N N R (T BN N EE:

)dx

()

version: 1.1
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/ 1 1
:I—x+1+\/;dx :J‘{(x+1)2+x2}dx e . e el .
x+1l-x 1. Evaluate the following indefinite integrals
1 1
=|(x+1)*> dx +|x? dx . .
I( ) J. (i) (3x2 -2x + 1) dx (i) (\/; % dx, (x>0)
3 3 J J ¥
+1)2  x2 2 ER - 1
b 3) +%+c=§(x+1)2+§x2+c (i) [x(vx +1)dx,  (x>0) (v) [(2x + 3)" dx
P 2 .
. 3 v [(Vx +1) d,  (x>0) (v (J} = —j dx, (x>0
(vi) jsmx2+cos X e ( ) ( ) J \/; ( )
cos“xsinx 3 ) \/7( N 1)
(vii) xj;‘ dx, (x>0) (viii) | yyy dy, (y>0)
. 3
Solution: J-Slnx + cos’ x Iy — I( Ls;mx. N c;)s x jdx (\/5 ~ 1)2 (1 ~ \/;)2
cos” xsinx cos” xXsinx cos” xsinx (ix) NG do, (9>0) (X) N dx (x>0)
1 cos X ] o X
:J. 5 + - dx .eZX + ex
coS” X sinx (xi) ———dx
=Iseczx dx + Icotx dx ’ €
=tanx + ln|sinx| + c 2. Evaluate
. 3—cos2x 2
(vii) I— dx, (cos2x¢—1) : ~ dx x +a>0 .. (1l — x
1+cos2x (i) (i1) 7 dx
TVx +a +Jx + blx +5>0 1+ x
c dx . ' 2
. B ) (iii) , (x>0,a>0) (iv) (a — 2x)2 dx
Solution: j3 cos2x _ I + 0s2x) gy = J‘(L—lj i | Iy aa— .
1 + cos2x 1 + cos2x 1+ cos2x (1 N x)3
. e _ -
= I 4 dx — Il dx = JZS@C xdx — Il dx v) . & d (vi) . sin(a + b) x dx
2cos” x
= 2tanx —x + ¢ (vii) .\/1 — cos2x dx, (1 —cos2x>0) (viii) .(lnx)xl dx , (x>0)
. J X
. - T V4
iX n’x d X L= =<x<=
() Jamxax ()I1+cosxx ( 2 ¥ 2)
(xi) [ 5 ax ;}b dx (xii) Ic0s3x sin2x dx
Jax® + 2bx + ¢
(xiii) cos2x — 1 dx, (1 + cos2x # 0) (Xiv) Jtanzx dx
Y1 + cos2x
version: 1.1 version: 1.1
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3.3 INTEGRATION BY METHOD
OF SUBSTITUTION

Sometimes it is possible to convert an integral into a standard form or to an easy

integral by a suitable change of a variable. Now we evaluate jf(x) dx by the method of
substitution. Let x be a function of a variable t, that is,
if
x = (), then dx = ¢'(t) dt
Putting  x=¢(¢) and dx = ¢'(t) dt, we have

[reode= fg)p'@) dr.

Now we explain the procedure with the help of some examples.

a dt
Example 1: Evaluate | —— at+b>0
P J’2\/a1‘+b ( )
Solution: Let at+b=u.Then
adt=du

ThusJ' adl Idu = %J.u_;du

wWat+b S odu

1 1
2 2 1
_ 1w +c—lu—+c=u2+c:\/at+b+c
2 1 20 1
— — +1 -
2 2
X
Example2:  Evaluate | dx.
4+ x°

Solution: Put 4+ x?=

=2xdx =dt or xdx = %dt, therefore

Example3:  Evaluate [xJx—-adx, (x>a)

Solution: Lletx—o=t=>x=a+t
= dx=dt

Thus Ix X —a dx='[(a + t)\/; dt

1 3 1 3
:J'(aﬁ + tzj a’t:aJ.tE dt + J‘t5 dt

3
= %(x —a)2(2a + 3x) + ¢

Example4:  Evaluate ICOtx\/; dx, (x>0).
Solution: Put Jx =z,
then d(\/;) = dz :ﬁ dx = dz
or % dx = 2dz
thus I% dx:jcot\/;.% dx = [cotz.(2dz)
= 2cotz dz = 2[<%Z @z = 2(sinz) cosz d
s A o

= 2ln‘sin\/;‘ + c

version: 1.1

()

version: 1.1



3. Integration

eLearn.Punjab

3. Integration

elLearn.Punjab

Example 5: Evaluate (i) Icosecxdx (i) Isec x dx

cosec X(COS€C)C - COtX) d
X

Solution: jcosecxdx = J
cosex x — cotx

Put cosec xcot x = t, then (—cosec xcot x + cosec’ x) dx = dt

or cosec x (cosec X — cot x) dx = dt

cosec x cosec X — cotx 1
SO I )dx=j—dt:ln|t|+c
cosec X — cot x) t

Thus cosec x dx = ln|cosec X — cot x| + c [t = cosec x — cot x]

sec x(sec X + tan x)

(i) Isec x v = I (sec X + tan x) g

Put sec x + tan x = t, then (secxtanx+seczx) dx = dt

or sec x(sec X + tan x) dx = dt

SO Isec x(sec X tan x) de = J; di = In|t| Lo

(sec X tan x)

Thus jsec xdx=1n|sec X + tan x| + c (t = sec x + tan x)

Example 6: Evaluate _[cos3 x+/sin x dx,(sinx > 0).
1
Solution: Put «/sin x = t, thendt = .cos x | dx
[2\/sin X }

or 2t dt = cos x dx [ NSsin x = t]
Putting +/sin x = ¢ and cos x dx= 2t dt in the integral, we have,
JCOSZX\/Sin xcos xdx = I(l - t4).t x 2t dt, ('.'coszx = 1l-sin*x =1 - t4)

- zj(t2 - t6)dt=2jt2dt - 2]1‘6 dt

=2.—-2—+4c
3 7
3 7 3 7
= 2(Sinx)2 — 2(Sinx)2 +c = 2sinzx — 251'112x+c
3 7 3 7

version: 1.1

Example 7: Evaluate .[\/1 + sin x dx, (—%<x<%)

. . - N1 — sin x 1— sin® x
Solution: J.\/l + sin x dx = j\/l + sin x. T dx = J. ,—1 —
_ J‘ CcCos X

V1 — sinx
Put sin x = t, then cos x dx = dt, therefore
1
J1+sinx dx = .COSx dx = —|(1=1) 2dt
‘[ I\/ —Sll’lX J‘ j( )
(-0 -
= 7 +c= -2yl -t+c
- — 4+ 1|1
-5 #1)e

= — 2Jl — sinx+ ¢

Example 8: Find J'—3 (x>0)
x ln 2x)

Solution: Put In 2x =t then

1 1

—2dx=dt or — dx=dt

2x X

1 1 R 7
Thus [ —dv =[5 dt=[rd = — +c
Zn 2x) X t —2
1 1
= - 5 + c = — + C
2t (ln 2x)

Example 9: Find jaxzx dx, (a>0,a#1)
Solution: Put x*=¢, thenx dx = % dt

Thus _[axzx dx = Iat x% dt

version: 1.1
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= —jat dt = —2 c = +c
2 2lna 2lna
Example 10:  Evaluate
(i) J‘;dx, (—a<x<a) (i) j;dx, (x>a or x<—a)
Na'@ = x* wxl —a’
where a is positive.
Solution: (i) Let x=aSin 0, that is,
) T T
x =a Sin@ for — E<9<5’ then dx = a cos@ db
dx acos@ do
Thus | —— =
J.\/az - X '[\/cz2 — a’sin* 0
_I a cos@dd J-a cos@ do
a \/1 — sin* 6 a cosf
= [1d60 = 0 + c

(i) Put x=aSeco
Then dx=asecOtan 6 dd

= Sin™" (ﬁj + c
a

i.e., x=asecH

( X Sin 0)
a

for 0<0<Z or L<o<r.
2 2

dx
Thus .fx\/xz =

a

> =

j a sec@ tan@ d o

a secOasec’0 — a°

_ J‘a secd tan@ d o

( \/a2 (5602(9 - 1)
= lJ‘la’@: l O+ c :\/aztanzzatanﬁ)
a

| |

a sec@ .a tan@

1 X
= = Sec'= + e

( Sec 8 =
a a

Q| =

3. Integration
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3.4 SOME USEFUL SUBSTITUTIONS

We list below suitable substitutions for certain expressions to be integrated.

Expression Involving Suitable Substitution

(i) a — x’ X = a sin 6

(ii) ¥ = g x = a sec 0

(iii) m X =a tan 6

(iv) ~x+a (or\/x—a) m=t(orm:t)
(V) m X —a =a sin 6

(vi) m X +a=a sec 0

Example 1. Evaluate j; dx (a>0)
Jat+ x?
. T T
Solution: Let x = g tan @ for _5<9<5' Then
dx =asec’0do
Thus
2
I—l dx = I ! x a sec’0dl = j asec 0 d9
Var + x? \/a2 + a’tan® 0 a\/l + tan’0
3 asec’ 6 do B Isecé’d@
asec
0 0+ tan@
:jsec (secO+1an9) dO= In (sec 0 + tan ) + ¢,
secO+tan@
2 2 2 2 2
= In (a—_'_‘x-l-i} + ¢ ('.‘se02021+tan2(9:1+x—2:a tx e,
a a a a
/ 2 2 [ 2 2
:n( ¢ TX JF)C]Jrc1 secd = YL X assecd is
a a

=In (x + Na® + xz) —Ina + ¢,  positive for - %<0<§]

@)

version: 1.1
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=In (x + \a* + xz) + c

wherec = ¢, — Ina

Note: x++a’+x” is always positive for real values of a.

Example2.  Evaluate | (x>0)

dx
\V2x + x? ’
j dx :J‘ dx
V2x+xt T (x+1) 1
[O<9<£}
2

sec O tan d@ _ jsec O tan dO

-]
(x+1)2—1 Jsec? 6 -1 tan 6
= In (secd + tanf) +¢ = In (x+ 1+ \/2x+x2) +¢

Solution:

Let x+1=sec d. Then

dx = sec 0 tan 0 dO

Thus

stecﬁ do

Evaluate the following integrals:

_ 2
1 =2 2. [—% _ 3 [«
J4 — x? x° +4x +13 4 +x
4. I ! dx 5. I ¢ dx
X Inx e’ + 3
x+b sec” x
6. —dx 7. J.\/—
(x + 2bx + 0)5 tan x
dx 2
8. (a) Show that J. 5 > =1In (x + \x —a ) + c
X —a
(b) show that j\/az P de = Lsin't 2 Jai —x* + ¢
a a

3. Integration
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version: 1.1

Evaluate the following integrals:

dx 1 1+x
0. — 10. d d
I(1+xz)§ J‘(1+x2 Tan ' x Il—xx
12. [0 49 13, -2 14, [ —2
71+ cos™ 0 “Jat - x* \/7—6x—x
15. | . €05 x. dx 16. [cos x (ln .sm xj dx
sinx In sin x J sin x
17. [— X% 18. | al dx
Y4 + 2x + X° Ixt 2+ 5
- 1 cx + 2
19. -z — —1|d 20. d
.|:COS(\/; Zj:|><(\/; ]x V33 X
21, [- 2, 22. | dx
sin x + CoS x 1 . 3
—SIn x + —COS x
2 2
3.5 INTEGRATION BY PARTS
We know that for any two functions fand g.
d , '
— [f(x) ()] = () g(x) + f(x)¢'()
! d !/
or (0 == [f(x)ex)] -(x) ()
Integrating both the sides with respect to x, we get,
76 T[4 ) e) - ) g(xﬂ &
= J ( ]dx - j f )dx
version: 1.1
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f(x g(x) +c - If g(x) dx (By Definition)
J.fx = x)g x) Ig (x dx+c (1)
or If (x) g'( ) f(x) g(x) —ng ) f'(x) dx 6))

A constant of integration is written, when jg(x) /'(x) dx is evaluated. The equation (i)

or (i)"is known as the formula for integration by parts.

If we put u = f(x) and dv=_g"(x)dx
then du =f"(x) dx and v = g(x).
The equation (i) and (i)’ can be written as
Iu dv = uv—Iv du + ¢ (11)
ju dv = uv—J.v du (1)’
Example 1. Find [x cos x dx.
Solution: If  flx)=x and g ' (x) = cos x,
then fllx)=1 and g(x) = sin x

Thus jx cos xdx = x sin x — j(sin x) (1) dx
= x sinx — (— cosx) + c

= x sinx + cos x + ¢

Example2.  Find [x " dx

Solution: Let u=x and dv = e* dx,
then du=1.dx and V= e
Applying the formula for integration by parts, we have

Ixex dx zxex—jexx ldx=xe' — e +¢

version: 1.1
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Example 3. Evaluate [x tan’ x dx
Solution: Ix tan® x dx = jx(seczx — 1) dx ( 1 +tan’x = seczx)
= jx sec” x dx —_[xdx (I)

Integrating the fist integral by parts on the right side of (I), we get

2
Ix tan” x dx = [x tan x —jtanx.ldx] — (% + Clj

—xtanxderJ.

2 2
. (= sinx) dx — (% - c} = x tanx + In[cosx| + ¢, - % - ¢
cos x

2

x
= x tan x+1n|cosx| -5 + ¢, wherec =c¢, — ¢
Example 4. Evaluate [x° In x dx
Solution: ij In xdx = j(ln x) x” dx
6 6
= (lnx)x— - [ ldx =X Inx- —Ixsdx
6 x
x° 1] x°
= —Inx - —-|— + ¢
6| 6
6 6
=X Inx- 2 +c whereec = -
6 36 6
Example 5. Evaluate Iln(x + VX’ )
Solution: Let f(x) = ln( + /X ) and g'(x) = 1. Then

f'(X) = | X [1 + %(x2 + 1)5_1. 2x)

x+\/x2+1

1 x
= A+ =
x+\/)c2 + 1 ( NE 1j

=)

version: 1.1
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1 y x4+ 1+ x _ | andg(x)=x
x + Ax* 41 Vx© o+ 1 x* 4+ 1

Using the formula jf(x) g'(x)dx = f(x) g(x)—jg(x)f’(x) dx, we get
1 VX' + 1) . 1dx = [l e+ D] x - [x.————a
In(x+x+) x = [In(x + Vx~ + 1)] x Ixmx
Iln (x N l)x — %J(xz + 1)_5(2x) dx
=xIn(x + Vx*+1) - % u

+
1 + ¢
2

=x In (x + \/x2+1) — Nx*+1 +¢, where ¢ = —% ¢,

Example 6. Evaluate Ixz. a e™ dx
Solution: If we put flx) = x? and g’ (x) = ae™ then
f'(x)=2x and 8(x) = e~

Using the formula If(x) g'(x) dx = f(x) g(x)—Jg(x)f’(x) dx, we get
Ixz Lax dx = x* e —Ie”x.(2x) dx

2
= xe” — ZIxe“ dx

But jx e” dx .dx

Il
e
7~ N\
Q |®§
N——
|
—
7\
Q m§
N——
X
—_

a

= lxe‘”‘ - lje‘” dx = lxe‘” _ (e—j + ¢
a

a a \ a
1 1
Thus sza e dx= x’e" - 2|— xe¥ — =" + ¢
a a
= x’e” — = xe" + S e + ¢ where ¢ = 2¢,

version: 1.1
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Example 7. Find [e“cos bx dx.

Solution: Let f(x) = e* and g’ (x) = cos bx

then f'(x) =a.e” and g(x) = sinbbx

o (smbbxj ~ J-(smbbxj % (ae™) dx

- % e™sin bx — %jewfsm bx dx (D)

Integrating J'e‘”‘ sin bx dx, by parts, we get

e x (_cosbbxj - J(_cosbbx) x (ae™) dx + ¢

ax

—% e” cos bx + % e“cos bxdx + ¢, (1)

Thus Ie"x cos bx dx

j e sin bx dx

Putting the value of [esin bx dx in (I), we get

je“" cos bx dx =

S| -

. 1
™ sin bx — = — —e®cos bx +— Ie“’“cos bx dx + ¢
bl b b
2
. a a a
= —e%sin bx + — e“cos bx — — Ie“"cos bx dx — — ¢
b b b

2
or [l%jj'e”x cos bx dx = % e“sin bx + [% e“ cos bx — % C

b* a b* a
ie. |e”cos bx dx = — e“ sinbx+ — e*cos bx| — X —.cC
I a’ +b{b2 b } a+b> b

ax

e . ab
= — 2[bsmbx+ acosbx]+c, wherec = — —— ¢

a’+b b(a2+ b2) :

If we put a=rcos6 and b =rsin6;
then ¢ +b*=r> => r=+a’ + b’

é _ rsind

b
= = tand = O = tan ' =
a r cos@ a

@)

version: 1.1
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and a cos bx + b sin bx =r cos 0 cos bx + r sin 6 sin bx
= r [cos bx cos 0 + sin bx sin 0] = r cos (bx — 0)

= va> + b* cos (bx - tanléj, (49 = tanléj

a a

The answer can be written as:

Ie"" cos bx dx = _ e™ cos(bx — tan~ léj + ¢

a’ b’ d
Example 8.  Evaluate [Va’ + x* dx

1
Solution: J\/a2+x2.1dx=(\/a +x)x—j ;a +x) . 2x dx
2
= xvJa’+x* - Iﬁdx

= xvJa’+x* — ja ta - dx
\/a + x°

2
_ N d 4 4
X Cl +x J. a +X X + J.\/m X
2J.\/a2 +x7de = xNa* + X + az.jﬁ dx
= xva' +x* + az[ln(x + a® + xz) + Cl:|

(See Example 1 Article 3.4)

2

2
I\/az + x* dx = gx/az + X+ %hl(x + \/a2+x2) + ¢, where ¢ = azc]
Similarly integrals [va’ — x* dr and [Vx’ -’ can be evaluated.

Example 9. Evaluate [sin'x dx.

Solution: jsin“x dx = Isinzx. sin*x dx = Jsinzx(l — coszx) dx

3. Integration
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version: 1.1

= J.sin2 xdx — Isinz x cos’x dx
— J‘# dx — Isinzx cos’xdx (D)
Integrating [sin’x cos’x dx by parts, we have

) 2 .2
J.sm X cos“x dx = Icos X sin“ x cos x dx

= COSX(

= % cos x sin’x + % Isin“x dx .. (II)  then f '(x)= —sinx

] I X (-sinx)de [ I /09 = cos x and

g'(x) =sin® x cos x.

and g(x) = sin’ s1r; x}

Putting the value of Isinzx cos>x dx in (I), we obtain,

. 1 2 1 . 1¢.
J‘sm“x dx = j R [ I B —J‘sm“x dx
2 2 3 3

1 1 . 1¢.
= —jldx - —Icos 2x dx — — cosx sin’x — —Ism“x dx
2 2 3 3

or (1 + l) Isin“x dr =~ ox - l[sm 2xj +c - L cosx sin’x
3 2 2 2 3

) 311 1 . 1 .
Ism“x dx = = | = x —— sin2x — —cosx sin°x + ¢
4127 3 3
=3 m 3 sinov - Leosxsin'x + ¢ where ¢ = ic1
8 16 4 4
1 + sin x
Example 10. Evaluatej )
1+ cosx

. X X

. . e"|1+2 sin— cos—

. (1 + ( j

Solution E (1+ sinx) o 2 2) gx | 1+ cosx=1+2c0s® = — 1
1 + cosx X 2

2
2cos” —

version: 1.1
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i.e. Ie (1 il s1nx) dx = Iex(% sec’ g + tan Ej dx

1 + cosx 1. Evaluate the following integrals by parts add a word representing all the
_ 1 jexseCZE dx + jextan e (D) functions are defined.
2
But I(taﬂ gj e dx = (tan j e’ - I (SGC —] — dx +c, (Integrating by parts) (i) [ x sinx dx (ii) [1n x dx (i) [x In xdx
i [ 2 [ 3 i [ 4
i.e. jex tan % dx = ¢e* tanE -3 Iexsec25 dx+c (D) (iv) 1x In x dx V) Jx In x dx (vi) X In x dx
(vii) [ Tan"'x dx (viii) [ sinx dx (ix) [ x> Tan"'x dx
i Xpan i P P P
Putting the value of Je tan 5 dx in (I), we get () o Tan-'x dr (i) & Tan-'x dx (xil) [ cosx dx
X . e * . _1 . * . _1
je (1 * Smx)dlej‘exseczi dx-{e" tan> — ljex seczfdx+c]=ex tan> + ¢ (xiii) J Sin"x dx (xiv) Jx Sin”x dx
I + cosx 2 2 2 2 2 2 . . , ¢ .
(Xv) |e* sin x cos x dx (xvi) X sin x cos x dx
(xvii) [x cos®x dx (xviii) [ x sin®x dx
Example 11. Show that |~ = . .
P Ie [af(x A )] x = et fle) (xix) |(In x)2 dx (XX) (In(tanx) sec’x dx
Solution: Ie"x[af(x) + f'(x)] dx = J.e“x. af(x) dx + Je”x. f'(x) dx ..(A) (i) c x Sin''x e
In the second integral, let ¢(x) = e* and g'(x) = f'(x), Jl =X’
then P'(x) = (e“") x a and g(x) = f(x) 2. Evaluate the following integral.
o) Ie"“” CSf(x) dx = ™ x If dx + ¢ (i) [ tan* x dx (ii) [sec* x dx (iii) Iex sin2x cos x dx
= ¥ f(x) — Ia e“ (x) dx + ¢ (iv) [tan’x secx dx (V) [* & dx (vi) J‘e’xsin2x dx
thus Je“x[af(x) +f’(x)] dx = Jae“"f(x) dx + Je‘“f’(x) dx + ¢ (vii) :ezx cos3x dx (viii) :COS@C3X dx
—Ia € ) dx + [e /(x) —Ia " f(x) dr + c] 3. Show that je“"sin bxdx = ———— ! e’ sm(bx — Tan~ lbj + c.
= e” (x) + c. Va* + b’ 4

4. Evaluate the following indefinite integrals.
i) [Va@ -2 (i) [Vd - a®dx
(i) [V4- 57 dx () ;m dx
v i +4de (Vi) [x* e ax

version: 1.1 version: 1.1
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5. Evaluate the following integrals.

. (1 } ) .

(i) je (x + In x] dx (i) Ie (cosx + sinx)dx
(iii) Ie“{a Sec™'x + T '—le - J dx (iv) Je3x[3 Sinsyinz—xcosx} dx
(v) J‘ezx[_ sinx + 2cosx] dx (vi) J‘(l x+exx)2 dx

-1
m Tan™ x

(vii) [ (cosx — sinx) dx (viii) j(e1+—2) dx
X

; 2x ex(l + x)
(|X) J‘m dx (X) jm dx

. I — sinx ) .,
(xi) j(—l - cosx]e dx

3.5 INTEGRATION INVOLVING
PARTIAL FRACTIONS

If P(x), Q(x) are polynomial functions and the denominator Q(x)( = 0), in the rational
function %,can be factorized into linear and quadratic (irreducible) factors, then the rational
X

function is written as a sum of simpler rational functions, each of which can be integrated by
methods already known to us.

Here we will give examples of the following three cases when the denominator Q(x)
contains

Casel. Non-repeated linear factors.

Casell. Repeated and non-repeated linear factors.

Caselll. Linear and non-repeated irreducible quadratic factors or non repeated
irreducible quadratic factors.

3. Integration
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version: 1.1

@)

-x + 6

Example 1: Evaluate dx, >2
P J‘2x2 - T7x + 6 o (x )
Solution: The denomicator 2x> - 7x + 6 = (x — 2) (2x — 3),
-x + 6 A B
(x—Z)(2x—3) x — 2 2x — 3
or —X + 6 =A(2x - 3) + B(x — 2) which is true for all x

Putting x = 2, we get
-2+6=A4-3)+Bx0 =A=4

and Putting

or %:B(——]3B2—9

H —X + 6 d:(4 -9 )d
usj.(x—2)(2x—3) A | P Y K

:41n(x—2)—%1n(2x—3)+c, (x>2)

X = 9x? + 12x

Example 2:
P 2x2 = TIx + 6

Evaluate Iz dx,  (x>2)

Solution: After performing the division by the denominator, we get

3_ 2 _
J-2x2 9x +12xdx=j(x—l+ : X + 6 )dx
2x° — Tx + 6 2x° — Tx + 6

= [xdx = [ldv + [——dr + |

(x - 2)

:x?—x+4ln(x—2)— %(2)6—3)"'0: (x>2)

dx, (See the Example 1)
2x —

©)

version: 1.1
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. . 2a -1
Example 3:  Evaluate (] Ixz —a M x7a) =2[In(x 1) = In (x + 1)] + 3 {(x T } +c

-1

.. 2a
(i) dx, (x<a _
jaz—xz ( ) :21n(x ij— 31+C
X + X —
Solution: (i) The denominator x> — a? = (x — a)(x + a),
2a 4 B e*(x* + 1)
Let = + Example 5:  Evaluate [———/ dx
(x—a)(x+a) X — a X + a (x+1)
1 , . . w2
- X —a - x+a (Applying the method of partal fractions) Solution: Ie((x—:)zl) deJ.ex [1 - ( il) + ( 2 l)z]dx, (By Partial Fractions)
X + X X +
2a 1 1 4 .
ThUSj(x_a)(x+a)dx=j£x_a—x+ajdx=J.(x—a) .1dx—(x+a) .ldx J.ex(xz +1)d J.Xd 2J‘ o . 2J’ o . (I)
= ——— ax =\ e X — X + X
X —a ()C+1)2 x + 1 (x+1)2
=ln|x—a|—1n|x+a|+c:1n N + ¢, (x>a)
e We integrate by parts the last integral on the right side of (I).
(i) Itis left as an exercise.
-1 -1
J.ex(x+1)_2dx= e’ . M — J‘(M) et dx
-1 -1
7 1 L _ ex ex
Example 4: Evaluate I(x ) dx (x 1) or I(x S 1) dx 1 Ix i (D
Solution: We write Using (II), (I) becomes
_ X 2 + 1 X X X
—E L a4 B, C j—e(x 2)dx=jede—2je d + 2] - —— + [S—dx
(x—l)(x+1) x — 1 (x—l) x + 1 (x+1) x + 1 x + 1 x + 1
_ 2 N 3 _ 2 Applying the method _ (ex N c) B ZJ e dr — 2e N 2J~ e I
x —1 (x — 1) x + 1 of Partial Fractions x + 1 x +1 x +1
Thus Tx — 1 B 2 3 2 = e — 2¢ +c=xex+ex_zex+c:M+c.
J‘( 1)2(+1)dx_'[x 1+( 1)2_x+1 gy x + 1 x + 1 x + 1
X — X - X —
=2f(x = 1)"1dx + 3[(x = 1) 1dx - 2 N'.1d
Jr = 1) rax + 3[(x = 1) hdx = 2f (x + 1) Example6:  Evaluate | = - dx
241 X -
:2ln(x—1)+3(x_—1)—21n(x+1)+c (x>1) _ |
-2 + 1 Solution: The denominator x*-1=(Xx-1)2+x+1),
version: 1.1 version: 1.1
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Let 1 _ A Bx + C
(x—l)(x2+x+1) x -1 x+x+1
1 (_;jx -2
= N ?i 1 + x2 P 1, (Applying the method of partial fractions)
I N S T
3 x-1 3 ¥ +x+1
1 1 1 1 2x + 4
Thus dx= || —. - — . —|d
(x—l)(x2+x+1)x'[(3 x — 1 6x2+x+1jx
:J‘(l ! 1.dx—l.22x—+l—l.2;jdx
3 x -1 6 x +x+1 6 x +x +1
1 o 1 ¢ 5 = 1 1
_gj‘(x—l) dx—gj.(x +x+1) (2x+1)dx 2.[( 1)2 (\/gjz dx
X+—| + | —
2 2
1
1 11 s
= — ln|x - 1| - —ln(x2 + x + 1) — — . —Tan™ + c
3 23 V3
2 2
1 1 2x + 1
= —Injlx =1 = =In (x* +x + 1 —Tan™ + c
3 v =1 ( ) J3 ( 3 j
Note: x*+ x + 1 is positive for real values of x.
Example7:  Evaluate | 62x dx
x -1
Solution: Put x? = t, then 2x dx = dt and
2x 1
dx = dt =
J.xé—l g jﬁ 1 j(z—l)(zf2+t+1)
1 1 2t + 1
=—lnt—1——lntz+t+1——Tanl( )+c
3 o =1 ( ) NE] NE]

(See the example 6)

version: 1.1

1 1 1 L 2x° 1
= gln‘x2 - 1‘ - gln(x4 + X+ 1) - ﬁTanl(%) + ¢

Example 8: Evaluate I—f dx, x # 0,x # — 1

x(x — 1)
. 3 _A_ B Cx+D
Solution: Let x(x3 _ 1) Yy x—-1  x+x4+1
_ 3 + 1 + 22x 1 (By the method of partial fractions)

X x —1 X"+ x +1

Let j 32 dx = j(_—3 1 + 22x 1 jdx

x(x—l)(x +x+1) X x -1 X+ x+1

= =3f(x) e + [(x = 1) odr + [(F x4 1) (20 4 1)

= —3In |x| + In |x — 1|+In (x2 +x+1) +c
= —3In |x|+ln|x—1|(x2+x+1)+c

= —3In |x| + In ‘x3 —1‘ + c

2
Example 9: Evaluate I(xz " i;():f;x -
Solution: We write
Let 2x* + 6x _Ax + B Cx + D
(x2+1)(x2+2x+3) X+ 1 X+ 2x + 3
2x + 1 2x + 3 , _ .
- - (Applying the method of partial fractions)
x + 1 X+ 2x+3
2x% + 6x 2x + 1 2x + 3
dx = - dx
Thus J.(xz + 1)(x2 + 2x + 3) J.(xz +1 X+ 2x + 3}
2x 1 2x + 2 1
= dx + — dx — dx
Jsz+1 J.xz+1 JAx2+2x+3 J‘xz+2x+3
version: 1.1
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= [(+1) " (2x) dx + ! dx — [(x+2x+3)" (2x+2) dx - 1 dx
o) o o Jg e = Jlesaensy” Qe - [
= In (x2 + 1) + Tan"'x — In (x2 + 2x + 3) — %Tan‘1 x\/+§1 +c

Evaluate the following integrals.

c 3x + 1 5x + 8

1. —d 2. d.
F—— Gy - @

3. (2 +3x - 34 dx 4. . (a _ b) ad dx (a>b)
Joxt+2x - 15 -(x—a)(x—b) ’
3 —-x ¢ 2x

5. -1—x—6x2dx 6. -xz—azdx
3 o 3 — 2 — —

7. : — dx 8. [X 23_’“ = 7 dx

X + 5x — 4 2x 3x -2
- 3x* — 12x + 11 c 2x — 1

0. d. 10. d.
G- G-2)(x-3" e -y -3
o 2 o

11. fx O+ 6 dx 12. 4 j ’x dx
T+ - 1) (20 +3) T(1+x)(2 + 3x)
~ 2 ~

13. 2 dx 14. L &
T(x = 1) (x+1) T(x = 1)(x+1)

. R 3 2

15, [ X% & 16. [ D 4
Yx° - 3x7 + 4 T(x+1)(x - 2)

17 ‘X0 + 22x% + l4x — 17 18 - x — 2 dx

' (x = 3)(x + 2) T (a6 1)

19. | al dx 20. ox — 7 dx

. (x — 1)()c2 + 1)

. (x + 3)(x2 + 1)

3. Integration
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-1 + 4x 12
21. | (x - 3)(x2 +4) dx 22. T3 dx
23 -9x+6d 24 2x° + 5x+3 dx
C oY) -8 S (- 1) (¢ +4)
- 2xF —x — 7 3x + 1
25. 26.
'(x+2)2(x2 +x + 1) . '(4x2+1)(x2 - x + 1) o
' 4x + 1 - 6a’
27. . (x2 +4)(x2 +4x + 5) dx 28. . (x2 +a2)(x2 +4a2) dx
- 2x* -2 . 3x — 8
29. ‘ (x4 +x° + 1) dx 30. ' (x2 - X + 2)(x2 +x + 2) dx
31 - 3x° +4x*+ 9% + 5 d

. (x2 +x + 1)(x2 + 2x + 3)

3.6 THE DEFINITE INTEGRALS

We have already discussed in section 3.2 about the indefinite integral that is, if ¢' (x) =
f(x), then

If(x) dx = ¢(x) + ¢, where cis an arbitrary constant

If If dx = ¢(x) + ¢, then the integral of f from a to b is denoted by jf
intergral from a to b of f of x, dx) and is evaluated as:

dx (read as

b

If(x) dx = j.(é'(x) dx

= |¢(x) + c

(it f(x) = ¢(x))
"= [g(b) + ] - [#(a)

b
If(x) dx has a definite value ¢(b) — ¢(a), so it is called the definite integral of f from a to b.

+c]=¢(b) - 4(a)

qi(b) — ¢(a) is denoted as [¢(x)]b or ¢(x)}b (read ¢(x) from a to b)

version: 1.1
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The interval [a, b] is called the range of integration while a and b are known as the
lower and upper limits respectively.

b
As ¢(b) — d(a) is a definite value, so the variable of integration x in If(x) dx can be
replaced by any other letter. @

o
—
\,\
—_
~
~—
Sy
I
—
\
—~
~
~
53
Il

#(b) ~ ¢(a)

Note: If the lower limitis a constant and the upper limit is a variable, then the integral is

x

a function of the upper limit, that is, If(t) dt = | ¢(1) [ = ¢(x) — ¢(a)

For Example, I Wdi=[r] = % -d

The relation ¢’ (x) = f(x) shows that f(x) gives the rate of change of ¢(x), so the total
change in ¢(x) from a to b as ¢(b) — ¢(a) shows the connection between anti-derivatives and

b
definite integral jf(x) dx .

About 300 B.C. and around this, mathematicians succeeded to find area of plane
region like triangle, rectangle, trapezium and regular polygons etc. but the area of the
complicated region bounded by the curves and the x-axis from x = g to x = b was a challenge
for mathematicians before the invention of integral calculus.

Now we give attention to the use of integration for evaluating areas. Suppose that a
function fis continuous on interval a < x < b and f(x) > 0. To determine the area under the
graph of f and above the x-axis from x = a to x = b, we follow the idea of Archimedes
(287-212 B.C.) for approximating the function by horizontal functions and the area under f

3. Integration elLearn.Punjab
To explain the idea mentioned above, we first y
draw the graph of fdefined as: f(x) = %xz /
The graph of fis shown in the figure. We divide /
the interval [1, 3] into four sub-intervals of equal length /
3-1 1

== DB/

As the subintervals are /AF c
[xo x,10 [xyn 10 [, 5], [x5 x,], SO .0 MEZTIN

x,=1,x,=15,x,=2, x,=2.5,x,=3 0 Lor R e

In the figure MA = f(x,), NB = f(x,) and MN = &x, so it
is obvious that the area of the rectangle AMNC < the area of the shaded region AMNB < area
of the rectangle DMNB, that is,

flx,).6x < area of the shaded region AMNB < f(x,).5x

* * * * W

Let x,, x,, x;, x, be the mid point of four sub-
intervals mentioned above. /‘

Then the value of fat x, is f(x,), so the area of the /
rectangle FMNE = f(x,) ox /

(See the rectangle FMNE shown in the figure) /

/]

We observe that the area of the rectangle FMNE is £ B fE/
approximately equal to the area of the region AMNB under AR
the graph of f from x, to x,. e /’/M > x

0 % N

Now we calculate the sum of areas of the rectangles shown in the figure, that is,

* *

£(x) x + f(x,) 6x + f(x,) 6x + f(x,) b+

_ {f(;) s (%) + /(%) +f(;4)}5x

version: 1.1

by the sum of small rectangles.

version: 1.1
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N | —

+ ? 1 + 2 1 + ? 1 + 2 1
(5 4 e e
2 2l 2 2l 2 2l 2 2
(1 + 1.5)2 (1.5 + 2)2 (2 + 2.5)2 (2.5 + 3)2
+ + +
2 2 2 2

(125)" + (175)" + (225)" + (275) |

N

(1.5625 +3.0625 + 5.0625 + 7.5625)

NN N

= —(17.25) =4.3125

3 3PP
But jlxzdxz Lt o Lo =20 43
' 2 23] 6 6

1

If we go on increasing the number of intervals, then the sum of areas of small rectangles
approaches closer to the number 4.3.

*

If we divide the interval [1, 3] into n intervals and take x, the coordinate of any point
of the jthinterval and éx ,=x ,—x,_,,i=1,2, 3, .., n, then the sum of areas of n rectangles is

Zn:f(xijéx which tends to the number 4.3 when n = and each &x 0.
i=1

Thus lim > f(x,) &x, =4.3 and we conclude that

n—o0 i—1
Sx;—>0 1=

3

im Y f(x)dx = jl x* dx.
éfx_ioo i=l 1 2

Thus the area above the x-axis and under the curve y = f(x) from a to b is the definite

integral I £(x) d.

version: 1.1
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Consider a function f which is continuous on the interval a < x < b and f(x) > 0.

The graph of fis shown in the figure.
We define the function A(x) as the area above the
x-axis and under the curve y = f(x) from a to x. Let &x
be a small positive number and x + 8x be any number
in the interval [a, b] such that a < x < x + dx.

Let P(x, f(x)) and Q(x + dx, flx + bx)) be two points
onthe graph of f. The ordinates PM and QN are drawn
and two rectangles PMNR, SMNQ are completed.

¥

According to above definition, the area above o

the x-axis and under the curve y = f(x) from a to x + x
is A(x + dx), so the change in area is
A(x + 8x) — A(x) which is shaded in the figure

H-i-[:‘),,lf[ + Ox)
s @ o
PR
y=R) gy
A
X x + ﬁx
i = i
a M N b

Note that the function fis increasing in the interval [x, x + dx].
From the figure, it is obvious that area of the rectangle PMNR < A(x + 8x) — A(x) < area of

the rectangle SMNQ, i.e.,
f(x) 8x < A(x + 6x) — A(x) < flx + dx) dx
Dividing the inequality by éx, we have

A(x + 5x) — A(x)

f(x) < T <f(x + §x)
;iir%f(x) = f(x) and glig%f(x + 5x)

Since the limits of the extremes in (I) are equal, so

A(x + §x) — A(x)

ox
. A(x + 5x) — A(x) _
Thus lim 5 f(x).
or A’ (x) = flx)

D

= /(%)

>f(x) when 6x — 0.

that is, A(x) is an antiderivative of f, so jf(x) dx = A(x) + ¢

and j F()dx = [A(x)] = A(x) - A(a)

version: 1.1
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Since A(x) is defined as the area under the curve y = f(x) from a to x, so A(a) = 0

X

Thus A(x) = '[f(x) dx (D)

a

Putting x = b in the equation (I), gives

A(b) = j[f(x) dx

which shows that the area A of the region, above the x-axis and under the curve y = f (x) from
a to b is given by

b

_[f(x) dx, thatis, 4= jf(x) dx

£

If the graph of fis entirely below the x-axis, then the value of each f(x,) is negative and

each product f(x,) 6x,, is also negative, so in such a case, the definite integral is negative.
Thus the area, bounded in this case by the curve y = f(x), the x-axis and the lines

3. Integration elLearn.Punjab

b 1y
X =a,x =b 1s — If(x)dx.
) -nf2 r - .
For example, sin x is negative for - n <x <0 ' ' V4 | b
and is positive for 0 < x < . N ] 01 n/2 "X
Therefore the area bounded by the x-axis . i
and graph of sin function from —r to = is given by
0 V4 - Vg b a
—J sinx dx + Isinx dx = Isinx dx + Isinx dx { If(x) dx = —If(x) dx
- 0 0 0 a b
= [-cosx]," + [-cosx] = —[COS(—ﬂ')—COSO] + [—(cosn—cosO)]
- {1 - ()] =22 - s
version: 1.1

.’fsinx dx = [—cosx]’_rﬂ = —[cos 7T—COS(—7Z)] - —[_1_(_1)] -0

b
The Definite integral [ /(x) dx

gives the area under the curve y = flx) from x = a to x = b and the x-axis (proof is given
in the article 3.6.1)

(b) Fundamental Theorem of Calculus

If fis continuous on [a, b] and ¢’ (x) = f(x), that is,
®(x) is any anti-derivative of fon [a, b], then

[£(x) dx = ¢(b) - ¢(a)

Note that the difference ¢(b) — d(a) is independent of the choice of anti-derivative of the
function f.

(c) jf(x)dx:—jf(x)dx
(d) j.f(x)dx:j'f(x)derj-f(x)dx, a<c<b
Proof of (c) and (d):

(c) If o' (x) =fix), thatis, if ¢ is an anti-derivative of f, then using the Fundamental Theorem
of Calculus, we get

i f(x) dx = ¢(b) - ¢(a)= ~[4(a) - $(b)] = —j 7(x) dx

version: 1.1
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(d) If ¢’ (x) = fix), that is, if ¢(x) is an anti-derivative of f(x), then applying the Fundamental

Theorem of Calculus, we have

!f(xj dx = ¢(c) — ¢(a)and jf" = ¢(b) - ¢(c)
Thus [ £(x) dv + [ £(x) de = 9(c) — d(a) + #(5) — 4(c)
= 46) - 9(e) = [1(x)ax

a

Other properties of definite integrals can easily be proved by applying the Fundamental

Theorem of Calculus.
Now we evaluate some definite integrals in the following examples.

j'(x3 +3x2) dx (i)

-1 1

2 2
Example 1: I x + 1

Evaluate (i) dx

x + 1

Solution:

(i) j(x3 + 3x2) dx = jx3 dx + j‘3x2 dx
e c c

_ ﬂ+ (v = {(34) _ (—i) } +[6) - ()]

81 1 81 — 1
= _TI"_'Z} +[27 - (-1)] = Tt (27 + 1)
-20+28=48
2 2 2 2
() [ tla-[rlr2g
x +1 ’ x + 1

2 2 _ 2
= X 1+ 2 dx:j(x—1+ 2)dx
1 x + 1 x + 1 1 x + 1

2 2 2
::xdx—J.ldx+2J-
1 1

1

version: 1.1
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Example 2:

Solution:

N

(0) J‘X3+9x+l

= :%21 — [x]l2 + 2[ln(x+1)]12

_ @) (12)} C[2-1] +2[m(2 4 1) — (1 + 1)]

2

= 2—%)—1+2[1n3—1n2]

= 1 + 21nE
2

Evaluate (i) dx (i) secx(secx +tanx) dx

fx3+9x+1
0 X+ 9

ot— |y

X+ 9

fx+9x 1
J > dx
0 X+ 9 x*+9

version: 1.1
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: :
(i) Isecx(secx + tanx) dx=j(seczx + secx tanx) dx
0 0
: :
= jseczx dx + Isecx tanx dx
0 0
= [tanx]: + [secx]: = (tan% - tanO) + (sec% — sec Oj
:(1—0)+(x/§—1):\/§
% 1
Example3:  Evaluate | — dx
v 1 — sinx
3 1 -
Solution: j 1_ dx=j 1 T Smx , dx
+ 1 — sinx 2 (1 — sinx)(1 + sinx)
5 . 3 .
:J~ 1+s.1nzx dx=I1+§lnxdx
y 1 — sin“x ,  Cos"Xx
: :
= J( ! S X j dx = I(seczx + secxtanx) dx
5\ cos” X cos” x °
=2 (See the solution of example 2(ii))
2
Example 4: Evaluate _[(x + |x]) dx
-1
2 0 2
Solution: j(x + |x|) dx = I(x + |x|) dx + I(x + |x|) dx (by property (d))
-1 -1 0
P r '.'|x|=—x ifx <0
= [[x+ (0] dx + [ (x+(x)] dx _
-1 0 =X ifx>0
version: 1.1
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0 2 2
=[0dx + [2x dx=0+2 [ xax
—1 0

0

N
Example 5: Evaluate |
0

Solution: Letf(x)=x>+9. Thenf’(x) =2x, so

_1
2

= %I(x2+ 9) © (2x) dx

3
2 (2x)
3x 2
dx = | =——d
'[ ¥ +9 ) J‘\/x2+9 !
- 2@ 7 d

== B = 3[f(x)]; +c = 3(x*+9)? +c

J7
3x

N 1 1 1
Thus _([\/m dx = {3(x2+ 9)2} = 3{(7 +9) - (0 + 9)2}

0

={a®5—@f}

3(4 - 3) =3

Sin™! x

V1 = x?

Example 6: Evaluate dcx, x=+ — 1,1

i

Solution: Let ¢=Sin"'x. Then x=sin¢ for —% <t < %

; ) T T
and dx= costdt= 1 — sin’t dt [ cos t is +ve for 5 <t < —}

2
=l — x* dt

version: 1.1
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1

NI

or dc=dt (x =#-1,1)

if x=l, thenl =Sin t =t = Sin_llzz
2 2 2 6
and if x = @, then—3= Sin ¢ =t =Sin’1£ =—
2 2 2
V3 N
+ Sin'x 1
Thus ———dx= | (Sin"' x) . ——dx
'! V1 - x° 1 - x°
2

tdt (v x=S8int = Sin"' x = 1)

Il
1 olN——w|y R—t——

_ep zjz_(zjz _ 1z _ =
2. 23 6 219 36
6
_l47z2—7r2 _ 37 :72_2
2 36 72 24
s
Example7:  Evaluate [x cosx dx
0
Solution: Applying the formula

[7@) ¢ @dr = /@) ¢ ) ~ [$ () f ' (x) dx, we have
Ix cosxdx = xsinx — I(sin x) (1) dx

=xsinx—[(-cosx)+c]
=xsinx+cosx+c wherec=-c,

.4

: s
Thus x cosx dx =[x sinx +cosx |

o t—an |

version: 1.1
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(E sin z + cos zj — (0sin0 + cos 0)
6 6 6

_r 1,3 ~(0+1) = LA EI
6 2 2 12 2
Example 8: Evaluate j x In x dx
1
Solution: Applying the formula

16097 @ dv = F) ¢@) = [$) /7 (x) dv, we have

J-(Inx)xdx=(lnx).x—22 — J. (%j la’x

X

e B 2 7]¢
Thus _[x Inx dx = lx2 Inx — x_}
1 2 4

[l

N |
-

|

NN
N——

e’ 1
= — + J—
4 4

1 3 1
Example 9: |If If(x) dx = 5, jf(x) = 3 and Jg(x) dx = 4, then

evaluate th e following definite integrals:

1

(i) [rex)ax (i) [[2/(x) + 3 g(x)] dx

-2

(i) j3f(x)dx - j‘Zg(x)dx

Q)

version: 1.1
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Solution: ()  [f(x)dx =[f(x)dx + [ f(x)dx=5+3=8

(ii) j [2 f(x)+3g(x)] dx = j 2 F(x) dx + j 3 g(x) dx

2 j‘f(x)dx +3 _1[ g(x) dx

2(5) + 3(4) = 10 +12 = 22

(iii) j3f(x) dx — ng(x) dx =73 jf(x) dx — 2 jg(x)dx

=3x5-2x4=15-8=7

Evaluate the following definite integrals.

2 1 0
1
1. (x> +1) dx 2 (x"” + 1) dx 3.
| J errs
2 N NS
4. jx/3—xdx 5 j 2t 1) dt 6. Ixxz—ldx
) 2
2 ¥ 3 1 2 1 1
7 I > dx 8 j(x - —| dx 0. J(x+—j\/x2+x+l dx
X"+ 2 ) X e 2
t dx ; [ 1 3 1
10. | - 1. [cos ¢ dt 12. j(“—] (1 - —2) dx
, X+ 9 . 1 X X
g T
2 2 % 7% 4 + .
13. jlnx dx 14. I e —e dx 15. I cos ¢ ZsmH do
1 0 0 2cos~ 6
: : :
16. Icos3(9a’9 17. Icos20c0t20d9 18. Icos“tdt
0 % 0
version: 1.1

©

O |y

3
19.  [cos’0 sin 0 do 20. [(1+cos® O)tan’0 dO 21.
0
1 2
S | [x3 +2j
22. J|x—3| dx 23. ,[—2 dx 24.
-1 1/8 x§
3 4o T o
25, [ -2l g 26, [¥mx—1 27.
(x = D™ + 1) , COS" X
1 3x % CoS X
28. [—==_ 4 29. dx  30.
!x/4 "3 isinx(2+sinx) 3y
6

sec 0
sin @ + cos @

do

O | N

=
[\S}
I
(\)

S

=
+
[

1

—F dx
1 + sin x

Sl N [N = ——— W

sin x
(1+cos x)(2 + cosx)

O 0 | N

3.7 APPLICATION OF DEFINITE INTEGRALS.

Here we shall give some examples involving area bounded by the curve and the x-axis.

Example 1. Find the area bounded by the curve y = 4 — x?
and the x-axis.

Solution: We first find the points where

the curve cuts the x-axis. Putting y = 0,
we have

4-x2=0=>x=1%2.

So the curve cuts the x-axis at (-2, 0) and (2, 0)

The area above the x-axis and under the curve y =4 — x?is
shown in the figure as shaded region..

Thus the required area = I(4—x )dx={4x——}

>

20/ | (2,0)

=)

version: 1.1
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3 3

- (-3

_E“ngj_g'
3 3 3

- (4(2) - (2)3]—(4(—2) _ Y

Example 2.

Find the area bounded by the curve y = x3 + 3x2and the x-axis.

A

Solution: Putting y = 0, we have

x3+3x2=0

=>xx+3)=0=>x=0,x=-3

4 Chf O | g |02

The curve cuts the x-axis at (-3, 0) and (0, 0)

(see the figure).

i H
%]

)

Eo

xﬂ M L
Tl

Bl

0
Thus the required area = I(x3 + 3x%) dx
e

¥ i | i i § i
. -‘:0 = LN [de E2 PO
e 9

*
4
_ (0 ) M.
_4+Oj (4 +(3)j

-o- (5 -2) - (") - o

Example 3.

Solution: Putting y = 0, we have
Xx*-4)=>x=0,x=%2

_ﬂj_
4

Find the area bounded by y = x(x? — 4) and the x-axis.

27

4

The curve cuts the x-axis at (-2, 0), (0, 0) and (2, 0). The graph of fis shown in the figure and

we have to calculate the area of the shaded region.
fx) = x(x* - 4),

3. Integration
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version: 1.1

fix) = 0for-2 < x <0, thatis, the area in the interval

[-2, 0] is above the x-axis and is equal to

'Tx(xz - 4)dx

=]).(x3— 4x) dx =

0 4 0
:{x_ - zxz}
-2 4 -2

LA
4 2

=0 - [(_2)4 - 2(—2)2] =0 - (E - 8) = —(4 -8

4 4

A

-

vy

20 "%

fix) < 0for 0 < x < 2, that is, the area in the interval [0, 2 ] is below the x-axis and is

equal to - E(X3_ 4) dx = __%4 _ 2le
16
= —{ il 2(4)) - 0}
= -[H4-8=-(4=4

Thus the area of the shaded region=4+4 =38

Example 4:
the 1st quadrant.

Find the area bounded by the curve f(x) = x3 — 2x2 + 1 and the x-axis in

Solution: Asf(1)=1-2+1=0,so0x-1isfactor of X3 - 2x? + 1. By long division, we find that

x2—x—1is also a factor of x3 — 2x2 + 1.
Solving x2 —x -1 =0, we get

1+J1+4 1+45

x: =

2 2

Thus the curve cuts the x-axis at x =1,

d

1-45

1+\/§
an
2

2

(=)

version: 1.1
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3. Integration

The graph of the curve is shown in the A
adjoining figure and the required area is 1Y
shaded. -
The required area A will be .
(0,1)
1
A = .(x3— 2x%+ 1) dx -\
.0 *}l T T T T T 1{{13/}1 T {
| X' v X
== - 2= +x
4 3 . :
:l_EHJ_O:M:l -
4 3 12 12 -
Y
vy
Example 5: Find the area between the x-axis and the curve y>= 4 — x in the first

quadrant from x =0 to x = 3.
Solution: The branch of the curve above the x-axis is

y =44 —x

The area to be determined is shaded in the adjoining figure.

3
Thus the required area = [4 — x dx
0

Let4 —x =t (i), then -dx=dt = dx=-dt
Puttingx=0and x=3(i). wegett=4and t=1

1 1 1 1
Now the required area = Jtz x (=dt) = —jtz dt
4 4

4 1 4

'[ﬂdt =

1

3/2
¢

3/2

1

3

3 3
= E\z”[‘ = %{(4)2 - (1)2} = % [8 - 1] = % (square units)

version: 1.1

1.  Find the area between the x-axis and the curve y=x>+ 1 fromx =1 to x = 2.
Find the area, above the x-axis and under the curve y =5 — x? from x = -1 to x = 2.

Find the area below the curve y = 3vx and above the x-axis between x = 1 and x = 4.

Find the area bounded by cos function from x = —g to x= %

Find the area between the x-axis and the curve y = 4x — x°.

Determine the area bounded by the parabola y = x? + 2x — 3 and the x-axis.

Find the area bounded by the curve y = x3 + 1, the x-axis and line x = 2.

Find the area bounded by the curve y = x® — 4x and the x-axis.

Find the area between the curve y = x(x — 1)(x + 1) and the x-axis.

10. Find the area above the x-axis, bounded by the curve y? =3 —x from x=-1to x =2

V0N R

11. Find the area between the x-axis and the curve y = cos %x fromx= —rztorx

12. Find the area between the x-axis and the curve y =sin 2xfromx=0to x = %

13. Find the area between the x-axis and the curve y = «2ax — x> when a > 0.

3.8 DIFFERENTIAL EQUATIONS

An equation containing at least one derivative of a dependent, variable with respect to
an independent variable such as

y il + 2x =0 (1)
dx
2
or Xd2y+@—2x:o (i)
dx dx

is called a differential equation.

Derivatives may be of first or higher orders. A differential equation containing only
derivative of first order can be written in terms of differentials. So we can write the equation
(i) as y dy + 2x dx = 0 but the equation (ii) cannot be written in terms of differentials.

version: 1.1
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Order: The order of a differential equation is the order of the highest derivative in
the equation. As the order of the equation (i) is one so it is called a first order differential
equation. But equation (ii) contains the second order derivative and is called a second order
differential equation.

Consider the equation

y=Ax*+ 4 (iii)
where A is a real constant
Differentiating (iii) with respect to x gives

Y _ 2Ax (iv)
dx

From (iii) 4 = y_—24 so putting the value of A in (iv), we get
X

Q=2(y_2 jx
dx X

dy

= x — =2y — 8whichis free of constant A
dx (1,5)
dy
= 2 - X — = 8 'Esﬂ
y dx * II T i |(| IJ* L
Substituting the value of y and its derivative in X X

(v), we see that it is satisfied, that is.
2(Ax? + 4) — x(2Ax) = 2Ax*> + 8 — 2Ax*=8
which shows that (iii) is asolution of (v)
Giving a particular value to A. say A = —1. we get
y=-x>+4

We see that (v) is satisfied if we put y = —x? + 4 and Y —-2X, soy =-x2+4is also a solution
of (v). d
For different values of A, (iii) represents different parabolas with vertex at (0, 4) and the
axis along the y-axis. We have drawn two members of the family of parabolas.
y=Ax*+4 for A=-1,1

version: 1.1

All solutions obtained from (iii) by putting different values of A, are called particular
solutions of (v) while the solution (iii) itself is called the general solution of (v).

A solution of differential equation is a relation between the variables (not involving
derivatives) which satisfies the differential equation.

Here we shall solve differential equations of first order with variables separable in the
forms

@y _ S A g0)
dc  g(y) dx  f(x)

Example 1: Solve the differential equation (x— 1) dx+ydy=0

Solution: Variables in the given equation are in separable form, so integrating either terms,
we have

I(x — Ddx + Iy dy = c,, where ¢, 1s a constant

2 2
or |2 —x|+ X = s which gives
2 2
Thus the required general solutionis x2 + y> - 2x=¢, where c=2c
Example 2: Solve differential equation
X2y + 1) Y-y
dx
Solution: The given differential equation can be written as
x*(2y+1) P _ 1 (1)
dx
o ) dy 1 .
Dividing by x2, we have (2y + 1) RS (x #0) (ii)
X X

Multiplying both sides of (i) by dx, we get

2y + 1)(d—y dx] = L dx

2
dx X

version: 1.1
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or 2y +1)dy=i2dx
X

Integrating either side gives

ey + 1)dy=_[%dx
! ( Ix_z dx = x_l + c)
¥ _

or y'+y= —— + ¢

Thus y*+ y=c - 1 is the general solution of the given differential equation.
X

Example 3: Solve the differential equation
1 dy
— L 2y =0 xz0,y>0
< dx y y

Solution: Multiplying the both sides of the given equation by X dx, gives
y

1 (ﬂ dxj - 2xdx =0 or 1 dy = 2x dx ( & dx = dyj
y \dx y dx
Now integrating either side gives Iny = x> + ¢, where ¢, is a constant

2 c

2
ory = ¢ ™ =¢". ¢

Thus y = ce* where e =c
is the required general solution of the given differential equation.

2
+
Solve & _ytl1
dx

Example 4:

—-X

e

Solution: Separating the variables, we have

21 dy=%dx=exdx

v+ 1 e’
Now integrating either side gives

Tan'y=e<+c, where cis a constant,
or y=Tan (e*+ )

which is the general solution of the given differential equation.

version: 1.1

w
0< < —
Y>3

Example 5: Solve 2e*xtan y dx + (1 -eX)sec2ydy=0

or 7<y< 3—7[
2
Solution: Given that: 2extany dx+ (1 —-e¥) sec?ydy=0 (i)
Dividing either term of (i) by tan y (1 — ), we get
2e" sec’ y

dx +
1 —¢€ tan y

dy=0

x 2
2e de 4 Secy

et — 1 tan'y
Integrating, we have

X 2
j—z( © )derJ(sec yjdyzcl (e" — 1>0)
e — 1 tan y

or =2In(ex-1)+In(tany)=c,
= In(e=1)?+In(tany)=1Inc,
or In[(ex—1)?tanyl=Inc
= (ex=1)?tany=c =

or dy=0

wherec, =Inc¢

tan y = c{ex- 1)
Example 6: Solve (siny + y cos y) dy =[x (2 Inx + 1)] dx

Solution: (siny+ycosy)dy=(2x1In x + x) dx (i)
or (l.siny+ycosy)dy=2xInx+x". l) dx
X
d : d  , d : .
= (—(y smy)j dy = (—(x Inx)} dx (*~—(y siny)=1.siny+y cosy and
dy dx dy

4 (x> Inx)2x Inx +x°. l)
dx X

Integrating, we have

f(j—y (v sin y)j dy = j(% (x* IHX)) dx +

version: 1.1
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= ysiny=x’Inx+c Note: The general solution represents a system of parabolas which are vertically above

(or below) each other.

dy 3, ]
: : : : : : : Example 2: Solve — = —x"+x - 3, if y = 0 when x = 2

Differential equations occur in numerous practical problems concerning to physical, dx 4
biological and social sciences etc. Soluti Given that

Thearbitrary constantsinvolvinginthe solution of differentequationscanbe determined olution: Giventha
by the given conditions. Such conditions are called initial value conditions. dy 3 N 3 0

i i : —_— = =X X — 1

The general solution of differential equation in variable separable form contains only dx
one variable. Here we shall consider those differential equations which have only one initial Separating variables, we have
value condition.

Note that the general solution of differential equation of order n contains n arbitrary dy = (2 24y 3jdx (ii)
constants which can be determined by n initial value conditions.

Integrating either side of (ii) gives

Example 1: The slope of the tangent at any point of the curve is given by 3
[ay = j(zxz +ox - 3)dx
% = 2x - 2, find the equation of the curve if y =0 when x = -1. \ ,
or yzix—+x——3x+c
4\ 3 2
Solution: Given that v 2x - 2 (1) — = lx3 n lxz —3x +c (iii)
dx r = 4

Now applying the initial value condition, we have

P
I-.".d

Equation (i)  can be written as
dy = (2x — 2) dx (i) (2 %
Integrating either side of (ii) gives

Jdy=[@x-2)dx

or y=x2-2x+¢c (iii)

Applying the given condition, we have
0=(-1)-2-1+c=c = -3

Thus (iii) becomes
y=x>-2x-3

which represents a parabola as shown in the

adjoining figure.

For ¢ =0, (iii) becomes y = x> — 2x.

The graph of y = x> — 2x is also shown in the figure.

1 1
0= ~() + (4 -32) + ¢

= (=6-2-2=2
Thus (iii) becomes

y =lx3+lx2—3x+2
4 2

= 4y=x3+2x*-12x+8

Example 3: A particle is moving in a straight line and its acceleration is given by
a=2t-7,

(i) find v (velocity) in terms of t if v=10 m/sec, whent=0

(ii) find s (distance) in terms of t if s =0, when t = 0.
version: 1.1 version: 1.1
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Solution: Given that a = 2t — 7, that is

ﬂ=2t—7 ('.’a:@]
dt dt

= dv=Q2t-7)dt
Integrating, we have

jdv = j(zt — 7) dt

= Vv=t-T7t+c, (1)
Applying the first initial value condition, we get
10=0-0+c, = «¢=10
The equation (1) becomes
v=t?—7t+10 which is the solution of (i)

Now & = 2 — 7t + 10 (-.-vzﬁj
dt dt
= ds=(?-7t+10)dt (2)
Integrating both sides of (2), we get
jds = j(ﬂ — 7t + 10) dt

r 1
= s =—-T7— +10t + ¢ 3
3 > ) 3)

Applying the second initial value condition, gives
0=0-0+0+c, =, =0
. 1 3 7 2 . .o
Thus is s = Et — Et + 10¢ the solution of (ii)

Example 4: In a culture, bacteria increases at the rate proportional to the number
of bacteria present. If bacteria are 100 initially and are doubled in 2 hours, find the
number of bacteria present four hours later.

Solution: Let p be the number of bacteria present at time ¢, then

b _
L=k (k>0

version: 1.1

or la’p:ka’t = Inp =kt + ¢

p
— p = ektJrcl _ kt. ecl
or p =ce" (i) (where e = c)

Applying the given condition, that is p = 100 when t = 0, we have
100 =ce®k=¢c (" e'=1)

Putting ¢ = 100, (i) becomes p = 100 ek (i)

p will be 200 when t = 2(hours), so (ii) gives
200=100e* = e*=2

1

or 2k =1In2 :>k:51n2

Subsituting = — In2 in (i1), we get

1ln2[ ln %
p = 1ooe(2 J_ 100e 2" = 100e ")
1
» = 100 (22)
4

If ¢ = 4 (hours), then p = 100 (22) = 100 x 4 = 400.

Example 5: A ball is thrown vertically upward with a velocity of 1470 cm/sec
Neglecting air resistance, find

(i) velocity of ball at any time t

(ii) distance traveled in any time t

(iii) maximum height attained by the ball.

Solution.
(i)  Letvbe the velocity of the ball at any time ¢, then by Newton'’s law of motion, we have

dv

dt
or Idv = J— g dt (integrating either side of (1))

=-gt+c¢, (i)
Given that v= 1470 (cm/sec) when t =0, so

= -g = dv=-—-gdt (1)

version: 1.1
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(ii)

(iii)

1470=—g0)+c, = ¢, =1470
Thus (ii) becomes v =—gt + 1470 = 1470 — 980t (taking g = 980)
Let h be the height of the ball at any time ¢, then

4h _ 1470 — 980 4 ( v:ﬁj
dt dt

or dh=(1470-9801) dt

2

h=14707 — 980 = +¢, = 1470 — 490 £ + ¢, (ii)
2

h=0whent=0, sowe have
0=1470x0-490(0)*+c, = =0
Putting ¢, = 0 in (iii), we have
h=1470t-490¢
The maximum height will be attained when v =0, that is

1470 — 980 ¢ =0 = = =%(sec)

2
Thus the maximum height attained in (cms) =1470 x 6]—490 X (%)

=2205-1102.5=1102.5

Check that each of the following equations written against the differential
equation is its solution.

(i) x;{—y:1+y ' y=cx -1

X
. ]
i) 2y +DNE 1=-0 ) 2y yp=c— =
(i1) (2y )dx yi+y .

(iii) yd——e2le , Y=+ 2x + ¢
x
(iv) %%—2y=0 ) y:cex2
1
(V) % = yet ) y = tan (ex+ c)

version: 1.1

1.

13.

15.

17.

19.

20.

21.

22.

23.

Solve the following differential equations:

1 —
d—y:—y 3. yvdx + xdy =0 4, d_y= al
dx dx y
d—yzl,(y>0) 6. sinycosecxd—yzl 7. xdy+y(x—-1)dx =0
dx x’ dx
2
R (x,y >0) 9 ld—y:l(1+y2) 10. 2x2yd—y:x2—1
y+1 vy dx x dx 2 dx
dy 2xy 2 2y 2 2
- + ——— =x 12. (¥ =) = +)y" +x0° =0
dx 2y + 1 ( )dx 4
sec’ xtany dx + sec’ytanxdy = 0 14. (y - x?j = 2(y2+ %)
X X
1+cosxtanyd—y=0 16. y_xﬂ=31+xﬂ
dx dx dx
secx + tan yﬂ =0 18. (e)C + e"") @ =e —e"
dx dx

Find the general solution of the equation % — x = xy* Also find the particular solution
X
if y=1 when x=0.

Solve the differential equation % = 2x given thatx =4 when t=0.

Solve the differential equation % + 2st = 0. Also find the particular solution if s = 4e,

when t = 0.

In, a culture, bacteria increases at the rate proportional to the number of bacteria
present. If bacteria are 200 initially and are doubled in 2 hours, find the number of
bacteria present four hours later.

A ball is thrown vertically upward with a velocity of 2450 cm/sec. Neglecting air
resistance, find

(i)  velocity of ball at any time t

(i)  distance traveled in any time t

(iii)  maximum height attained by the ball.

version: 1.1



