CHAPTER

4

Introdurtion to Analytic Geometry

4.1 INTRODUCTION

Geometry is one of the most ancient branches of mathematics. The Greeks systematically studied it about four centuries B.C. Most of the geometry taught in schools is due to Euclid who expounded thirteen books on the subject (300 B.C.). A French philosopher and m athematician Rene Descartes (1596-1650 A.D.) introduced algebraic methods in geometry which gave birth to analytical geometry (or coordinate geometry). Our aim is to present fundamentals of the subject in this book.

Coordinate System

Draw in a plane two mutually perpendicular number lines $x^{\prime} x$ and $y^{\prime} y$, one horizontal and the other vertical. Let their point of intersection be O, to which we call the origin and the real number 0 of both the lines is represented by 0 . The two lines are called the coordinate axes. The horizontal line $x^{\prime} O x$ is called the \boldsymbol{x}-axis and the vertical line $y^{\prime} O y$ is called the y-axis.

As in the case of number line, we follow the convention that all points on the y-axis above $x^{\prime} O x$ are associated with positive real numbers, those below $x^{\prime} O x$ with negative real numbers. Similarly, all points on the x-axis and lying on the right of O will be positive and those on the left of O and lying on the x-axis will be negative.

Suppose P is any point in the plane. Then \boldsymbol{P} can be located by using an ordered pair of real numbers. Through P draw lines parallel to the coordinates axes meeting x-axis at R and y-axis at S. Let the directed distance $\overline{O R}=x$ and the directed distance $\overline{O S}=y$.

The ordered pair (x, y) gives us enough information to locate the point P. Thus, with $\frac{\text { every point } P \text { in the plane, we can associate an ordered pair of real numbers }(x, y) \text { and we say }}{\text { version: } 1.1}$
that P has coordinates (x, y). It may be noted that x and y are the directed distances of P from the y-axis and the x-axis respectively. The reverse of this technique also provides method for associating exactly one point in the plane with any ordered pair (x, y) of real numbers. This method of pairing off in a one-to-one fashion the points in a plane with ordered pairs of real numbers is called the two dimensional rectangular (or Cartesian) coordinate system.

If (x, y) are the coordinates of a point P, then the first member (component) of the ordered pair is called the \boldsymbol{x}-coordinate or abscissa of P and the second member of the ordered pair is called the \boldsymbol{y}-coordinate or ordinate of P. Note that abscissa is always first element and the ordinate is second element in an ordered pair.
The coordinate axes divide the plane into four equal parts called quadrants. They are defined as follows:

Quadrant I: All points (x, y) with $x>0, y>0$
Quadrant II: All points (x, y) with $x<0, y>0$
Quadrant III: All points (x, y) with $x<0, y<0$
Quadrant IV: All points (x, y) with $x>0, y<0$
The point P in the plane that corresponds to an ordered pair (x, y) is called the graph of (x, y).

Thus given a set of ordered pairs of real numbers, the graph of the set is the aggregate of all points in the plane that correspond to ordered pairs of the set.

4.1.1 The Distance Formula

Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points in the plane. We can find the distance $d=|\overrightarrow{A B}|$ from the right triangle $A Q B$ by using the Pythagorean theorem. We have

Note that: $A B$ stands for
$m \overline{A B}$ or $|\overrightarrow{A B}|$

$$
\begin{align*}
& \begin{aligned}
& d=A B=A Q+Q B^{2} \\
&|A Q|=|R S|=|R O+O S| \\
&=|-O R+O S| \\
&=\left|x_{2}-x_{1}\right|
\end{aligned} \tag{1}\\
& |Q B|=|S B-S Q|=|O M-O N| \\
& \\
& =\left|y_{2}-y_{1}\right|
\end{align*}
$$

Therefore, (1) takes the form

$$
\begin{align*}
d^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
\text { or } \quad d & =|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{2}
\end{align*}
$$

which is the formula for the distance d. The distance is always taken to be positive and it is not a directed distance from A to B when A and B do not lie on the same horizontal or vertical line.

If A and B lie on a line parallel to one of the coordinate axes, then by the formula (2), the distance $A B$ is absolute value of the directed distance $\overrightarrow{A B}$.

The formula (2) shows that any of the two points can be taken as first point.

Example 1: \quad Show that the points $A(-1,2), B(7,5)$ and $C(2,-6)$ are vertices of a right triangle.

Solution: Let a, b and c denote the lengths of the sides $B C$ $C A$ and $A B$ respectively.

By the distance formula, we have

$$
c=A B=\sqrt{(7-(-1))^{2}+(5-2)^{2}}=\sqrt{73}
$$

$$
\begin{aligned}
& a=B C=\sqrt{(2-7)^{2}+(-6-5)^{2}}=\sqrt{146} \\
& b=C A=\sqrt{2-(-1)^{2}+(-6-2)^{2}}=\sqrt{73} \\
& \text { Clearly: } a^{2}=b^{2}+c^{2} .
\end{aligned}
$$

Therefore, $A B C$ is a right triangle with right angle at A.
Example 2: \quad The point $C(-5,3)$ is the centre of a circle and $P(7,-2)$ lies on the circle. What is the radius of the circle?

Solution: The radius of the circle is the distance from C to P By the distance formula, we have

$$
\begin{aligned}
\text { Radius } & =C P=\sqrt{(7-(-5))^{2}+(-2-3)^{2}} \\
& =\sqrt{144+25}=13
\end{aligned}
$$

4.1.2 Point Dividing the Join of Two Points in a given Ratio

Theorem: Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be the two given points in a plane. The coordinates of the point dividing the line segment $A B$ in the ratio $k_{1}: k_{2}$ are

$$
\left(\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}, \frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}\right)
$$

Proof: Let $P(x, y)$ be the point that divides $A B$ in the ratio $k_{1}: k_{2}$
From A, B and P draw perpendiculars to the x-axis as shown in the figure. Also draw $B C \perp A Q$. Since $L P$ is parallel to $C A$, in the triangle $A C B$, we have

$$
\frac{k_{1}}{k_{2}}=\frac{A P}{P B}=\frac{C L}{L B}=\frac{Q M}{M R}=\frac{x-x_{1}}{x_{2}-x}
$$

So, $\frac{k_{1}}{k_{2}}=\frac{x-x_{1}}{x_{2}-x}$
or $\quad k_{1} x_{2}-k_{1} x=k_{2} x-k_{2} x_{1}$
or $\quad\left(k_{1}+k_{2}\right) x=k_{1} x_{2}+k_{2} x_{1}$

$$
\text { or } \quad x=\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}
$$

Similarly, by drawing perpendiculars from A, B and P to the y-axis and
proceeding as before, we can show that $y=\frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}$

Note:

(i) If the directed distances $A P$ and $P B$ have the same sign, then their ratio is positive and P is said to divide $A B$ internally.
(ii) If the directed distances $A P$ and $P B$ have opposite signs i.e, P is beyond $A B$. then their ratio is negative and P is said to divide $A B$ externally.

$$
\frac{A P}{B P}=\frac{k_{1}}{k_{2}} \text { or } \quad \frac{A P}{P B}=-\frac{k_{1}}{k_{2}}
$$

Proceeding as before, we can show in this case that

$$
x=\frac{k_{1} x_{2}-k_{2} x_{1}}{k_{1}-k_{2}} \quad y=\frac{k_{1} y_{2}-k_{2} y_{1}}{k_{1}-k_{2}}
$$

Thus P is said to divide the line segment $A B$ in ratio $k_{1}: k_{2}$, internally or externally according as P lies between $A B$ or beyond $A B$.
(iii) If $k_{1}=k_{2}=1: 1$, then P becomes midpoint of $\overline{A B}$ and coordinates of P are $x=\frac{x_{1}+x_{2}}{2}, \quad y=\frac{y_{1}-y_{2}}{2}$
(iv) The above theorem is valid in whichever quadrant A and B lie.

Example 1: Find the coordinates of the point that divides the join of $A(-6,3)$ and $B(5$, -2) in the ratio 2 : 3 .
(i) internally
(ii) externally

Solution: (i) Here $k_{1}=2, k_{2}=3, x_{1}=-6, x_{2}=5$.
By the formula, we have

$$
x=\frac{2 \times 5+3 \times(-6)}{2+3}=\frac{-8}{5} \quad \text { and } \quad y=\frac{2(-2)+3(3)}{2+3}=1
$$

Coordinates of the required point are $\left(\frac{-8}{5}, 1\right)$
(ii) In this case

$$
x=\frac{2 \times 5-3 \times(-6)}{2-3}=-28 \text { and } \mathrm{y}=\frac{2(-2)-3(3)}{2-3}=13
$$

Thus the required point has coordinates $(-28,13)$

Theorem:

The centroid of a $\triangle A B C$ is a point that divides each median in the ratio $2: 1$. Using this
show that medians of a triangle are concurrent.
Proof: Let the vertices of a $\triangle A B C$ have coordinates as shown in the figure.
Midpoint of $B C$ is $D\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$.
Let $G(\bar{x}, \bar{y})$ be the centroid of the Δ.
Then G divides $A D$ in the ratio $2: 1$. Therefore

$$
\bar{x}=\frac{2 \cdot \frac{x_{2}+x_{3}}{2}+1 \cdot x_{1}}{2+1}=\frac{x_{1}+x_{2}+x_{3}}{3}
$$

Similarly, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}}{3}$.

In the same way. we can show that coordinate of the point that divides $B E$ and $C F$ each
in the ratio 2:1 are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
Thus (\bar{x}, \bar{y}) lies on each median and so the medians of the $\triangle A B C$ are concurrent.

Theorem: Bisectors of angles of a triangle are concurrent.
Proof: Let the coordinates of the vertices of a triangle be as shown in the figure. Suppose $|B C|=a,|C A|=b$ and $|A B|=c$
Let the bisector of $\angle A$ meet $B C$ at D. Then D divides $B C$ in the ratio $c: b$. Therefore
coordinates of D are $\left(\frac{c x_{3}+b x_{2}}{b+c}, \frac{c y_{3}+b y_{2}}{b+c}\right)$ The bisector of $\angle B$ meets $A C$ at I and I divides $A D$ in the ratio $c:|B D|$

Now $\frac{|B D|}{|D C|}=\frac{c}{b}$ or $\frac{|D C|}{|B D|}=\frac{b}{c}$
or $\frac{|D C|+|B D|}{|B D|}=\frac{b+c}{c}$
or $\frac{a}{|B D|}=\frac{b+c}{c}$ or $|B D|=\frac{a c}{b+c}$

Thus I divides $A D$ in the ratio $c: \frac{a c}{b+c}$ or in the ratio $b+c: a$
Coordinates of I are

$$
\left(\frac{(b+c) \frac{b x_{2}+c x_{3}}{b+c}+a x_{1}}{a+b+c}, \frac{(b+c) \frac{b y_{2}+c y_{3}}{b+c}+a y_{1}}{a+b+c}\right)
$$

i.e., $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$
The symmetry of these

The symmetry of these coordinates shows that the bisector of $\angle C$ will also pass through this point.

Thus the angle bisectors of a triangle are concurrent.

$$
\text { EXERCISE } 4.1
$$

1. Describe the location in the plane of the point $P(x, y)$ for which
(i) $x>0$
(ii) $x>0$ and $y>0$
(iii) $\quad x=0$
(iv) $y=0$
(v) $x<0$ and $y \geq 0$
(vi) $\quad x=y$
(vii) $\quad|x|=|y|$
(viii) $|x| \geq 3$
(ix) $\quad x>2$ and $y=2$
(x) $\quad x$ and y have opposite signs.
2. Find in each of the following:
(i) the distance between the two given points
(ii) midpoint of the line segment joining the two points
(a) $\quad A(3,1) ; B(-2,-4)$
(b) $A(-8,3) ; B(2,-1)$
(c) $A\left(-\sqrt{5},-\frac{1}{3}\right) ; B(-3 \sqrt{5}, 5)$
3. Which of the following points are at a distance of 15 units from the origin?
(a) $(\sqrt{176}, 7)$
(b) $(10,-10)$
(c)
$(1,15)$
(d) $\left(\frac{15}{2}, \frac{15}{2}\right)$
4. Show that
(i) the points $A(0,2), B(\sqrt{3}, 1)$ and $C(0,-2)$ are vertices of a right triangle.
(ii) the points $A(3,1), B(-2,-3)$ and $C(2,2)$ are vertices of an isosceles triangle.
(iii) the points $A(5,2), B(-2,3), C(-3,-4)$ and $D(4,-5)$ are vertices of a parallelogram. Is the parallelogram a square?
5. The midpoints of the sides of a triangle are $(1,-1),(-4,-3)$ and $(-1,1)$. Find coordinates of the vertices of the triangle.
6. Find h such that the points $A(\sqrt{3},-1), B(0,2)$ and $C(h,-2)$ are vertices of a right triangle with right angle at the vertex A.
7. Find h such that $A(-1, h), B(3,2)$ and $C(7,3)$ are collinear.
8. The points $A(-5,-2)$ and $B(5,-4)$ are ends of a diameter of a circle. Find the centre and radius of the circle.
9. Find h such that the points $A(h, 1), B(2,7)$ and $C(-6,-7)$ are vertices of a right triangle with right angle at the vertex A.
10. A quadrilateral has the points $A(9,3), B(-7,7), C(-3,-7)$ and $D(5,-5)$ as its vertices. Find the midpoints of its sides. Show that the figure formed by joining the midpoints consecutively is a parallelogram.
11. Find h such that the quadrilateral with vertices $A(-3,0), B(1,-2), C(5,0)$ and $D(1, h)$ is parallelogram. Is it a square?
12. If two vertices of an equilateral triangle are $A(-3,0)$ and $B(3,0)$, find the third vertex. How many of these triangles are possible?
13. Find the points trisecting the join of $A(-1,4)$ and $B(6,2)$.
14. Find the point three-fifth of the way along the line segment from $A(-5,8)$ to $B(5,3)$.
15. Find the point P on the join of $A(1,4)$ and $B(5,6)$ that is twice as far from A as B is from A and lies
(i) on the same side of A as B does.
(ii) on the opposite side of A as B does.
16. Find the point which is equidistant from the points $A(5,3)$, $B(-2,2)$ and $C(4,2)$. What is the radius of the circumcircle of the $\Delta \mathrm{ABC}$?
17. The points $(4,-2),(-2,4)$ and $(5,5)$ are the vertices of a triangle. Find in-centre of the triangle.
18. Find the points that divide the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ into four equal parts.

4.2 TRANSLATION AND ROTATION OF AXES

Translation of Axes

Let $x y$-coordinate system be given and $O^{\prime}(h, k)$ be any point in the plane. Through O^{\prime} draw two mutually perpendicular lines $O^{\prime} X$, O^{\prime} such that $O^{\prime} X$ is parallel to $O x$. The new axes $O^{\prime} X$ and $O^{\prime} Y$ are called translation of the $O x$ - and $O y$ - axes through the point O^{\prime}. In translation of axes, origin is shifted to another point in the plane but the axes
 remain parallel to the old axes.

Let P be a point with coordinates (x, y) referred to $x y$-coordinate system and the axes be translated through the point $O^{\prime}(h, k)$ and $O^{\prime} X, O^{\prime} Y$ be the new axes. If P has coordinates $(X, Y$ referred to the new axes, then we need to find X, Y in terms of x, y.

Draw $P M$ and $O^{\prime} N$ perpendiculars to $O x$.
From the figure, we have
$O M=x, M P=y, O N=h, N O^{\prime}=k=M M^{\prime}$
Now $\quad X=O^{\prime} M^{\prime}=N M=O M-O M-O N=x-h$
Similarly, $\quad Y=M^{\prime} P=M P-M M^{\prime}=y-k$
Thus the coordinates of P referred to $X Y$-system are $(x-h, y-k)$
i.e. $\quad X=x-h$
$Y=y-k$
Moreover, $x=X+h, \quad y=Y+k$

Example 1: \quad The coordinates of a point P are ($-6,9$). The axes are translated through the point $O^{\prime}(-3,2)$. Find the coordinates of P referred to the new axes.

Solution. Here $h=-3, k=2$
Coordinates of P referred to the new axes are (X, Y) given by

$$
X=-6-(-3)=-3 \text { and } Y=9-2=7
$$

Thus $P(X, Y)=P(-3,7)$.

Example 2: The $x y$-coordinate axes are translated through the point $O^{\prime}(4,6)$. The coordinates of the point P are $(2,-3)$ referred to the new axes. Find the coordinates of P referred to the original axes.

Solution: Here $X=2, Y=-3, h=4, k=6$.

$$
\text { We have } \quad x=X+h=4+2=6
$$

$$
y=Y+k=-3+6=3
$$

Thus required coordinates are $P(6,3)$.

Rotation of Axes

Let $x y$-coordinate system be given. We rotate $O x$ and $O y$ about the origin through an angle $\theta\left(0<\theta<90^{\circ}\right)$ so that the new axes are $O X$ and $O Y$ as shown in the figure. Let a point P have coordinates (x, y) referred to the $x y$-system of

coordinates. Suppose P has coordinates (X, Y) referred to the $X Y$-coordinate system. We have to find X, Y in terms of the given coordinates x, y. Let α be measure of the angle that $O P$ makes with O.

From P, draw $P M$ perpendicular to $O x$ and $P M^{\prime}$ perpendicular to $O X$. Let $|O P|=r$, From the right triangle $O P M^{\prime}$, we have

$$
\left.\begin{array}{c}
O M^{\prime}=X=r \cos (\alpha-\theta) \tag{1}\\
M^{\prime} P=Y=r \sin (\alpha-\theta)
\end{array}\right]
$$

Also from the $\triangle O P M$, we have

$$
x=r \cos \alpha
$$

$$
y=r \sin \alpha
$$

System of equations (1) may be re-written as:

$$
\left.\begin{array}{l}
X=r \cos \alpha \cos \theta+r \sin \alpha \sin \theta \\
Y=r \sin \alpha \cos \theta-r \cos \alpha \sin \theta \tag{2}
\end{array}\right]
$$

Substituting from (2) into the above equations, we have

$$
\left.\begin{array}{l}
X=x \cos \theta+y \sin \theta \\
Y=y \cos \theta-x \sin \theta \tag{3}
\end{array}\right]
$$

i.e., $(X, Y)=(x \cos \theta+\mathrm{y} \sin \theta, x \sin \theta+y \cos \theta)$
are the coordinates of P referred to the new axes $O X$ and $O Y$.

Example 3: The $x y$-coordinate axes are rotated about the origin through an angle of 30°. If the $x y$-coordinates of a point are $(5,7)$, find its $X Y$-coordinates, where $O X$ and $O Y$ are the axes obtained after rotation.

Solution. Let (X, Y) be the coordinates of P referred to the $X Y$-axes. Here $\theta=30^{\circ}$.
From equations (3) above, we have

$$
\begin{aligned}
X & =5 \cos 30^{\circ}+7 \sin 30^{\circ} \text { and } Y=-5 \sin 30^{\circ}+7 \cos 30^{\circ} \\
\text { or } \quad X & =\frac{5 \sqrt{3}}{2}+\frac{7}{2} \quad \text { and } \quad Y=\frac{-5}{2}+\frac{7 \sqrt{3}}{2}
\end{aligned}
$$

i.e., $(X, Y)\left(\frac{5 \sqrt{3}+7}{2} \frac{-5+7 \sqrt{3}}{2}\right)$
are the required coordinates.

Example 4: The $x y$-axes are rotated about the origin through an angle of arctan $\frac{4}{3}$ lying in the first quadrant. The coordinates of a point P referred to the new axes $O X$ and $O Y$ are $P(-1,-7)$. Find the coordinates of P referred to the $x y$-coordinate system.

Solution. Let $P(x, y)$ be the coordinates of P referred to the $x y$-coordinate system. Angle of rotation is given by $\arctan \theta=\frac{4}{3}$. Therefore, $\sin \theta=\frac{4}{5}, \cos \theta=\frac{3}{5}$.

From equations (3) above, we have

$$
X=x \cos \theta+y \sin \theta \quad \text { and } \quad Y=-x \sin \theta+y \cos \theta
$$

or $-1=\frac{3}{5} x+\frac{4}{5} y$ and $-7=-\frac{4}{5} x+\frac{3}{5} y$
or $3 x+4 y+5=0$ and $-4 x+3 y+35=0$
Solving these equations, we have

$$
\frac{x}{125}=\frac{y}{-125}=\frac{1}{25} \quad \Rightarrow x=5, y=-5
$$

Thus coordinates of P referred to the $x y$-system are $(5,-5)$.

EXERCISE 4.2

1. The two points P and O^{\prime} are given in $x y$-coordinate system. Find the $X Y$-coordinates of P reffered to the translated axes $O^{\prime} X$ and $O^{\prime} Y$.
(i) $\quad P(3,2) ; O^{\prime}(1,3)$
(ii) $\quad P(-2,6) ; O^{\prime}(-3,2)$
(iii) $\quad P(-6,-8) ; O^{\prime}(-4,-6)$
(iv) $P\left(\frac{3}{2}, \frac{5}{2}\right) ; O^{\prime}\left(-\frac{1}{2}, \frac{7}{2}\right)$
2. The $x y$-coordinate axes are translated through the point whose coordinates are given in $x y$-coordinate system. The coordinates of P are given in the $X Y$-coordinate system. Find the coordinates of P in $x y$-coordinate system.
(i) $\quad P(8,10) ; O^{\prime}(3,4)$
(ii) $\quad P(-5,-3) ; O^{\prime}(-2,-6)$
(iii) $P\left(-\frac{3}{4},-\frac{7}{6}\right) ; O^{\prime}\left(\frac{1}{4},-\frac{1}{6}\right)$
(iv) $\quad P(4,-3) ; 0^{\prime}(-2,3)$
3. The $x y$-coordinate axes are rotated about the origin through the indicated angle. The new axes are $O X$ and $O Y$. Find the $X Y$-coordinates of the point P with the given $x y$-coordinates.
(i) $P(5,3) ; \quad \theta=45^{\circ}$
(ii) $\quad P(3,-7) ; \quad \theta=30^{\circ}$
(iii) $P(11,-15) ; \quad \theta=60^{\circ}$
(iv) $\quad P(15,10): \theta=\arctan \frac{1}{3}$
4. The $x y$-coordinate axes are rotated about the origin through the indicated angle and the new axes are $O X$ and $O Y$.
Find the $x y$-coordinates of P with the given $X Y$-coordinates.
(i) $P(-5,3) ; \quad \theta=30^{\circ}$
(ii) $P(-7 \sqrt{2}, 5 \sqrt{2}) ; \quad \theta=45^{\circ}$

4.3 EQUATIONS OF STRAIGHT LINES

Inclination of a Line: The angle $\alpha\left(0^{\circ}<\alpha<180^{\circ}\right)$ measured counterclockwise from positive x-axis to a non-horizontal straight line l is called the inclination of l.

Observe that the angle α in the different positions of the line l is $\alpha, 0^{\circ}$ and 90° respectively.

Note: (i) If l is parallel to x-axis, then $\alpha=0^{\circ}$

(ii) If l is parallel to y-axis, then $\alpha=90^{\circ}$

Slope or gradient of a line: When we walk on an inclined plane, we cover horizontal distance (run) as well as vertical distance (rise) at the same time.
It is harder to climb a steeper inclined plane. The measure of steepness (ratio of rise to the run) is termed as slope or gradient of the inclined path
 and is denoted by m.

$$
m=\frac{r i s e}{r u n}=\frac{y}{x}=\tan \alpha
$$

In analytical geometry, slope or gradient \boldsymbol{m} of a non-vertical straight line with α as its inclination is defined by: $m: \tan \alpha$

If l is horizontal its slope is zero and if l is vertical then its slope is undefined.
If $0<\alpha<90^{\circ}, m$ is positive and if $90^{\circ}<\alpha<180^{\circ}$, then m is negative

4.3.1 Slope or Gradient of a Straight Line Joining Two Points

If a non-vertical line l with inclination passes through two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, then the slope or gradient m of l is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\tan \alpha$

Proof: Let m be the slope of the line l.

Draw perpendiculars $P M$ and $Q M^{\prime}$ on x-axis and a perpendicular $P R$ on $Q M^{\prime}$
Then $\quad \angle R P Q=\alpha, m \overline{P R}=x_{2}-x_{1}$ and $m \overline{Q R}=y_{2}-y_{1}$
The slope or gradient of l is defined as: $m=\tan \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Case (i). When $0<\alpha<\frac{\pi}{2}$
In the right triangle $P R Q$, we have

$$
m=\tan \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Case (ii) When $\frac{\pi}{2}<\alpha<\pi$
In the right triangle $P R Q$

$$
\tan (\pi-\alpha)=\frac{y_{2}-y_{1}}{x_{1}-x_{2}}
$$

or $\quad-\tan \alpha=\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$
or

$$
\tan \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { or } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Thus if $P\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are two points on a line, then slope of $P Q$ is given by:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { or } \quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

Note:
(i) $m \neq \frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ and $m \neq \frac{y_{1}-y_{2}}{x_{2}-x_{1}}$
(ii) $\quad l$ is horizontal, iff $m=0 \quad\left(\because \alpha=0^{0}\right)$
(iii) l is vertical, iff m is not defined $\left(\because \alpha=90^{\circ}\right)$
(iv) If slope of $A B=$ slope of $B C$, then the points A, B and C are collinear.

Theorem: The two lines l_{1} and l_{2} with respective
slopes m_{1} and m_{2} are
(i) parallel iff $m_{1}=m_{2}$
(ii) perpendicular iff $m_{1}=\frac{-1}{m_{2}}$

Remember that:

The symbol
(i) || stands for "parallel".
ii) पौ stands for "not parallel".
(iii) \perp stands for "perpendicular".

$$
\text { or } \quad m_{1} m_{2}+1=0
$$

Example 1: \quad Show that the points $A(-3,6), B(3,2)$ and $C(6,0)$ are collinear.

Solution: We know that the points A, B and C are collinear if the line $A B$ and $B C$ have the same slopes. Here Slope of

Notice that:

Slope of $A B=$ slope of $A C$
$A B=\frac{2-6}{3-(-3)}=\frac{-4}{3+3}=\frac{-4}{6}=\frac{-2}{3}$ and slope of $B C=\frac{0-2}{6-3}=\frac{-2}{3}$
$\because \quad$ Slope of $A B=$ Slope of $B C$
Thus A, B and C are collinear.

Example 2: \quad Show that the triangle with vertices $A(1,1), B(4,5)$ and $C(12,-1)$ is a right

 triangle.Solution: Slope of $A B=m_{1}=\frac{5-1}{4-1}=\frac{4}{3}$

$$
\text { and Slope of } B C=m_{2}=\frac{-1-5}{12-4}=\frac{-6}{8}=\frac{-3}{4}
$$

Since $m_{1} m_{2}=\left(\frac{4}{3}\right)\left(-\frac{3}{4}\right)=-1$, therefore, $A B \perp B C$
So $\triangle A B C$ is a right triangle.
4.3.2 Equation of a Straight Line Parallel to the x -axis
(or perpendicular to the y-axis)

All the points on the line l parallel to x-axis remain at a constant distance (say a) from x-axis. Therefore, each point on the line has its distance from x-axis equal to a, which is its y-coordinate (ordinate). So, all the points on this line satisfy the equation: $y=a$

Note:	(i) If $a>0$, then the line l is above the x-axis.
(ii) If $a<0$, then the line l is below the x-axis.	
(iii) If $a=0$, then the line l becomes the x-axis.	
Thus the equation of x-axis is $y=0$	

4.3.4 Derivation of Standard Forms of Equations of

Straight Lines

Intercepts:

- If a line intersects x-axis at $(a, 0)$, then \boldsymbol{a} is called x-intercept of the line.
- If a line intersects y-axis at $(0, b)$, then \boldsymbol{b} is called \boldsymbol{y}-intercept of the line.

1. Slope-Intercept form of Equation of a Straight Line:

Theorem: Equation of a non-vertical straight line with slope m and y-intercept c is given by:

Proof: Let $P(x, y)$ be an arbitrary point of the straight line l with slope m and y-intercept c. As $C(0, c)$ and $P(x, y)$ lie on the line, so the slope of the line is:
$m=\frac{y-c}{x-0}$ or $y-c=m x$ and $y=m x+c$
is an equation of l.
The equation of the line for which
$c=0$ is

$$
y=m c
$$

In this case the line passes through the origin.

Example 1: \quad Find an equation of the straight line if
(a) its slope is 2 and y-intercept is 5
(b) it is perpendicular to a line with slope -6 and its y-intercept is $\frac{4}{3}$

Solution: (a) The slope and y-intercept of the line are respectively:

$$
m=2 \quad \text { and } \quad c=5
$$

Thus $y=2 x+5$ (Slope-intercept form: $y=m x+c$)
is the required equation.
(b) The slope of the given line is

$$
m_{1}=-6
$$

$\therefore \quad$ The slope of the required line is: $\quad m_{2}=-\frac{1}{m_{1}}=\frac{1}{6}$
The slope and y-intercept of the required line are respectively:

$$
\begin{aligned}
& \quad m=\frac{1}{6} \quad \text { (slope of } \perp \text { line is }-6 \text {) and } c=\frac{4}{3} \\
& \text { Thus } \quad y=\frac{1}{6}(x)+\frac{4}{3} \quad \text { or } \quad 6 y=x+8 \\
& \text { is the reauired equation }
\end{aligned}
$$

is the required equation.

2. Point-slope Form of Equation of a Straight Line:

Theorem: Equation of a non-vertical straight line l with slope m and passing through a point $Q\left(x_{1}, y_{1}\right)$ is

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
\text { Proof: Let } P(x, y) \text { be an arbitrary point of the straight line }
\end{gathered}
$$ with slope m and passing through $Q\left(x_{1}, y_{1}\right)$.

As $Q\left(x_{1}, y_{1}\right)$ and $P(x, y)$ both lie on the line, so the slope of the line is

$$
m=\frac{y-y_{1}}{x-x_{1}} \text { or } y-y_{1}=m\left(x-x_{1}\right)
$$

which is an equation of the straight line passing through x_{1}, y_{1} with slope m.

3. Symmetric Form of Equation of a Straight Line:

We have $\frac{y-y_{1}}{x-x_{1}}=\tan a$, where α is the inclination of the line.

$$
\text { or } \frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r(\text { say })
$$

This is called symmetric form of equation of the line.
Example 2: Write down an equation of the straight line passing through $(5,1)$ and parallel to a line passing through the points $(0,-1),(7,-15)$.

Solution: Let m be the slope of the required straight line, then

$$
\begin{aligned}
m & =\frac{-15-(-1)}{7-0} \quad(\because \text { slopes of parallel lines are equal }) \\
& =-2
\end{aligned}
$$

As the point $(5,1)$ lies on the required line having slope -2 so, by point-slope form of equation of the straight line, we have

$$
\begin{aligned}
& y-(1)=-2(x-5) \\
& y=-2 x+11 \\
& 2 x+y-11=0
\end{aligned}
$$

is an equation of the required line.

4. Two-point Form of Equation of a Straight Line:

Theorem: Equation of a non-vertical straight line passing through two points $Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ is

Proof: Let $P(x, y)$ be an arbitrary point of the line passing through $Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$. So

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y-y_{2}}{x-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad(P, Q \text { and } R \text { are collinear points })
$$

We take

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \text { or } \quad y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \text { the required equation of the line } P Q \text {. } \\
& \text { or } \quad\left(y_{2}-y_{1}\right) x-\left(x_{2}-x_{1}\right) y+\left(x_{1} y_{2}-x_{2} y_{1}\right)=0
\end{aligned}
$$

We may write this equation in determinant form as: $\left|\begin{array}{lll}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$

Note: (i) If $x_{1}-x_{2^{\prime}}$ then the slope becomes undefined. So, the line is vertical.

(ii) $y-y_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{2}\right)$ can be derived similarly.

Example 3: \quad Find an equation of line through the points $(-2,1)$ and $(6,-4)$.
Solution: Using two-points form of the equation of straight line, the required equation is

$$
\begin{aligned}
y-1 & =\frac{-4-1}{6-(-2)}[x-(-2)] \\
\text { or } \quad y-1 & =\frac{-5}{8}(x+2) \text { or } 5 x+8 y+2=0
\end{aligned}
$$

5. Intercept Form of Equation of a Straight Line:

Theorem: Equation of a line whose non-zero x and y-intercepts are a and b respectively is

Proof: Let $P(x, y)$ be an arbitrary point of the line whose non-zero x and y-intercepts are a and b respectively. Obviously, the points $A(a, 0)$ and $B(0, b)$ lie on the required
 line. So, by the two-point form of the equation of line, we have

$$
\begin{array}{ll}
\quad y-0=\frac{b-0}{0-a}(x-a) & (P, A \text { and } B \text { are collinear) } \\
\text { or } \quad-a y=b(x-a) & \\
\text { or } \quad b x+a y=a b & \\
\text { or } \quad \frac{x}{a}+\frac{y}{b}=1 & \text { (dividing by } a b \text {) } \\
\text { Hence the result. } &
\end{array}
$$

Example 4: \quad Write down an equation of the line which cuts the x-axis at $(2,0)$ and y-axis at $(0,-4)$.

Solution: As 2 and -4 are respectively x and y-intercepts of the required line, so by two-intercepts form of equation of a straight line, we have

$$
\frac{x}{2}+\frac{y}{-4}=1 \quad \text { or } \quad 2 x-y+4=0
$$

which is the required equation.

Example 5: Find an equation of the line through the point $P(2,3)$ which forms an isosceles triangle with the coordinate axes in the first quadrant.

Solution: Let $O A B$ be an isosceles triangle that the line $A B$ passes through $A=(a, 0)$ $B(0, a)$, where a is some positive real number.

Slope of $A B=\frac{a-0}{0-a}=-1$. But $A B$ passes through $P(2,3)$.
$\because \quad$ Equation of the line through $P(2,3)$ with slope -1 is

$$
y-3=-1(x-2) \text { or } x+y-5=0
$$

6. Normal Form of Equation of a Straight Line:

Theorem: An equation of a non-vertical straight line l, such that length of the perpendicular from the origin to l is p and α is the inclination of this perpendicular, is

$x \cos \alpha+y \sin \alpha=p$

Proof: Let the line l meet the x-axis and y-axis at the points A and B respectively. Let $P(x, y)$ be an arbitrary point of $A B$ and let $O R$ be perpendicular to the line l. Then $|O R|=p$.

From the right triangles $O R A$ and $O R B$, we have,

$$
\begin{array}{lll}
& \cos \alpha=\frac{p}{O A} & \text { or } \\
& O A=\frac{p}{\cos \alpha} \\
\text { and } & \cos \left(90^{\circ}-\alpha\right)=\frac{p}{O B} & \text { or } \quad \mathrm{OB}=\frac{p}{\sin \alpha}
\end{array}
$$

$$
\left.\left[\therefore \cos \left(90^{\circ}-\alpha\right)=\sin \alpha\right)\right]
$$

As $O A$ and $O B$ are the x and y-intercepts of the line $A B$, so equation of $A B$ is

$$
\frac{x}{p / \cos \alpha}+\frac{y}{p / \sin \alpha}=1 \quad \text { (Two-intercept form) }
$$

That is $x \cos \alpha+y \sin \alpha=p$ is the required equation.

Example 6: The length of perpendicular from the origin to a line is 5 units and the inclination of this perpendicular is 120°. Find the slope and y-intercept of the line.

Solution. Here $p=5, \alpha=120^{\circ}$.
Equation of the line in normal form is

$$
x \cos 120^{\circ}+y \sin 120^{\circ}=5
$$

$$
\Rightarrow \quad-\frac{1}{2} x+\frac{\sqrt{3}}{2} y=5
$$

$$
\begin{equation*}
\Rightarrow \quad x-\sqrt{3} y+10=0 \tag{1}
\end{equation*}
$$

To find the slope of the line, we re-write (1) as: $y=\frac{x}{\sqrt{3}}+\frac{10}{\sqrt{3}}$ which is slope-intercept form of the equation.

Here $\quad m=\frac{1}{\sqrt{3}}$ and $c=\frac{10}{\sqrt{3}}$

4.3.5 A Linear Equation in two Variables Represents a Straight Line

Theorem: The linear equation $a x+b y+c=0$ in two variables x and y represents a straight line. A linear equation in two variables x and y is

$$
a x+b y+c=0
$$

where a, b and c are constants and a and b are not simultaneously zero.

Proof: Here a and b cannot be both zero. So the following cases arise:
Case I: $\quad a \neq 0, b=0$

In this case equation (1) takes the form:

$$
a x+c=0 \text { or } \quad x=-\frac{c}{a}
$$

which is an equation of the straight line parallel to
Remember that:
The equation (I) represents
a straight line and is called
the general equation of a
straight line.
the y-axis at a directed distance $-\frac{c}{a}$ from the y-axis.

Case II: $\quad a=0, \quad b \neq 0$

In this case equation (1) takes the form:

$$
b x+c=0 \text { or } y=-\frac{c}{b}
$$

which is an equation of the straight line parallel to x-axis at a directed distance $\frac{-c}{b}$ from the x-axis.
Case III: $\quad a \neq 0, \quad b \neq 0$
In this case equation (1) takes the form:

$$
b y=-a x-c \quad \text { or } \quad y=\frac{-a}{b} x-\frac{c}{b}=m x+c
$$

which is the slope-intercept form of the straight line with slope $\frac{-a}{b}$ and y-intercept $\frac{-c}{b}$
Thus the equation $a x+b y+c=0$, always represents a straight line.

4.3.6 To Transform the General Linear Equation
 to Standard Forms

Theorem: To transform the equation $a x+b y+c=0$ in the standard form

1. Slope-Intercept Form.

We have

$$
b y=-a x-c \quad \text { or } \quad y=\frac{-a}{b} x-\frac{c}{b}=m x+c \text {, where } m=\frac{-a}{b}, c=\frac{-c}{b}
$$

2. Point - Slope Form

We note from (1) above that slope of the line $a x+b y+c=0$ is $\frac{-a}{b}$. A point on the line is $\left(\frac{-c}{a}, 0\right)$

$$
\text { Equation of the line becomes } y=\frac{-a}{b}\left(x+\frac{c}{a}\right)
$$

which is in the point-slope form.

3. Symmetric Form

$$
m=\tan \alpha=\frac{-a}{b} \cdot \sin \alpha=\frac{a}{ \pm \sqrt{a^{2}+b^{2}}}, \cos \alpha=\frac{b}{ \pm \sqrt{a^{2}+b^{2}}}
$$

A point on $a x+b y+c=0$ is $\left(\frac{-c}{a}, 0\right)$
Equation in the symmetric form becomes

$$
\frac{x-\left(-\frac{c}{a}\right)}{b / \pm \sqrt{a^{2}+b^{2}}}=\frac{y-0}{a / \pm \sqrt{a^{2}+b^{2}}}=r
$$

is the required transformed equation. Sign of the radical to be properly chosen.

4. Two -Point Form

We choose two arbitrary points on $a x+b y+c=0$. Two such points are $\left(\frac{-c}{a}, 0\right)$ and $\left(0, \frac{-c}{b}\right)$. Equation of the line through these points is

$$
\frac{y-0}{0+\frac{c}{b}}=\frac{x+\frac{c}{a}}{-\frac{c}{a}-0} \quad \text { i.e., } y-0=\frac{-a}{b}\left(x+\frac{c}{a}\right)
$$

5. Intercept Form.

$$
\begin{aligned}
& \qquad a x+b y=-c \quad \text { or } \quad \frac{a x}{-c}+\frac{b y}{-c}=1 \quad \text { i.e } \quad \frac{x}{-c / a}+\frac{y}{-c / b}=1 \\
& \text { which is an equation in two intercepts form. }
\end{aligned}
$$

6. Normal Form.

The equation: $a x+b y+c=0$
can be written in the normal form as:

$$
\begin{equation*}
\frac{a x+b y}{ \pm \sqrt{a^{2}+b^{2}}}=\frac{-c}{ \pm \sqrt{a^{2}+b^{2}}} \tag{2}
\end{equation*}
$$

The sign of the radical to be such that the right hand side of (2) is positive.
Proof. We know that an equation of a line in normal form is

$$
\begin{equation*}
x \cos \alpha+y \sin \alpha=p \tag{3}
\end{equation*}
$$

If (1) and (3) are identical, we must have

$$
\begin{aligned}
& \frac{a}{\cos \alpha}=\frac{b}{\sin \alpha}=\frac{-c}{p} \\
& \text { i.e., } \quad \frac{p}{-c}=\frac{\cos \alpha}{a}=\frac{\sin \alpha}{b}=\frac{\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}}{ \pm \sqrt{a^{2}+b^{2}}}=\frac{1}{ \pm \sqrt{a^{2}+b^{2}}} \\
& \text { Hence, } \quad \cos \alpha=\frac{a}{ \pm \sqrt{a^{2}+b^{2}}} \quad \text { and } \quad \sin \alpha=\frac{b}{ \pm \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Substituting for $\cos \alpha, \sin \alpha$ and p into (3), we have

$$
\frac{a x+b y}{ \pm \sqrt{a^{2}+b^{2}}}=\frac{-c}{ \pm \sqrt{a^{2}+b^{2}}}
$$

Thus (1) can be reduced to the form (2) by dividing it by $\pm \sqrt{a^{2}+b^{2}}$. The sign of the radical to be chosen so that the right hand side of (2) is positive.

Example 1: \quad Transform the equation $5 x-12 y+39=0$ into
(i) Slope intercept form.
(ii) Two-intercept form.
(iii) Normal form.
(iv) Point-slope form.
(v) Two-point form.
(vi) Symmetric form.

Solution:

(i) We have $12 y=5 x+39$ or $y=\frac{5}{12} x+\frac{39}{12}, m=\frac{5}{12}, y$-intercept $c=\frac{39}{12}$
(ii) $5 x-12 y=-39$ or $\frac{5 x}{-39}+\frac{12 y}{39}=1$ or $\frac{x}{-39 / 5}+\frac{y}{39 / 12}=1$ is the required equation.
(iii) $5 x-12 y=-39$. Divide both sides by $\pm \sqrt{5^{2}+12^{2}}= \pm 13$. Since R.H.S is to be positive, we have to take negative sign.
Hence $=\frac{5 x}{-13}+\frac{12 y}{13}=3$ is the normal form of the equation.
(iv) A point on the line is $\left(\frac{-39}{5}, 0\right)$ and its slope is $\frac{5}{12}$.

Equation can be written as: $y-0=\frac{5}{12}\left(x+\frac{39}{5}\right)$
(v) Another point on the line is $\left(0, \frac{39}{12}\right)$. Line through $\left(\frac{-39}{5}, 0\right)$ and $\left(0, \frac{39}{12}\right)$ is

$$
\frac{y-0}{0-\frac{39}{12}}=\frac{x+\frac{39}{5}}{\frac{-39}{5}-0}
$$

(vi) We have $\tan \alpha=\frac{5}{12}=m, \sin \alpha=\frac{5}{13}, \cos \alpha=\frac{12}{13}$. A point of the line is $\left(\frac{-39}{5}, 0\right)$. Equation of the line in symmetric form is

$$
\frac{x+39 / 5}{12 / 13}=\frac{y-0}{5 / 13}=r \text { (say) }
$$

Example 2: \quad Sketch the line

$$
\begin{equation*}
3 x+2 y+6=0 \tag{1}
\end{equation*}
$$

Solution: To sketch the graph of (1), we find two points on it. If $y=0, x=-2$ and if $x=0, y=-3$.

Thus x intercept $=-2$

$$
y \text { intercept }=-3
$$

The points $A(-2,0), B(0,-3)$ areon(1). Plot these points inthe plane and draw the straight line through A and B. It is the graph of (1).

Example 3: Find the distance between the parallel lines
and $\quad 6 x+3 y-8=0$
sketch the between them.

Solution: We first convert both the lines into normal form. (1) can be written as

$$
2 x+y=-2
$$

Dividing both sides by $-\sqrt{4+1}$, we have

$$
\begin{equation*}
\frac{-2}{\sqrt{5}} x+\frac{-y}{\sqrt{5}}=\frac{2}{\sqrt{5}} \tag{3}
\end{equation*}
$$

which is normal form of (1). Normal form of (2) is

$$
\begin{align*}
& \frac{6 x}{\sqrt{45}}+\frac{3 y}{\sqrt{45}}=\frac{8}{\sqrt{45}} \\
& \text { i.e., } \frac{2 x}{\sqrt{5}}+\frac{y}{\sqrt{5}}=\frac{8}{3 \sqrt{5}} \tag{4}
\end{align*}
$$

Length of the perpendicular from $(0,0)$ to the line (1) is $\frac{}{\sqrt{ }}$ [From (3)]
Similarly, length of the perpendicular from $(0,0)$ to the line (2) is $\frac{8}{3 \sqrt{5}}[$ From (4)]

From the graphs of the lines it is clear that the lines are on opposite sides of the origin, so the distance between them equals the sum of the two perpendicular lengths.
i.e., Required distance $=\frac{2}{\sqrt{5}}+\frac{8}{3 \sqrt{5}}=\frac{14}{3 \sqrt{5}}$

The line parallel to the given lines lying midway between them is such that length of the perpendicular

from O to the line $=\frac{8}{3 \sqrt{5}}-\frac{7}{3 \sqrt{5}}\left(\right.$ or $\left.\frac{7}{3 \sqrt{5}}-\frac{2}{\sqrt{5}}\right)=\frac{1}{3 \sqrt{5}}$
Required line is $=\frac{2 x}{\sqrt{5}}+\frac{y}{\sqrt{5}}=\frac{1}{3 \sqrt{5}}$ or $6 x+3 y=1$
4.3.7 Position of a point with respect to a line

Consider a non-vertical line l

$$
l: a x+b y+c=0
$$

in the $x y$-plane. Obviously, each point of the plane is either above the line or below the line or on the line.

Theorem: Let $P\left(x_{1}, y_{1}\right)$ be a point in the plane not lying on

$$
\begin{equation*}
l: a x+b y+c=0 \tag{1}
\end{equation*}
$$

then P lies
a) above the line (1) if $a x_{1}+b y_{1}+c>0$
b) below the line (1) if $a x_{1}+b y_{1}+c<0$

Proof: We can suppose that $b>0$ (first multiply the equation by -1 if needed). Draw a perpendicular from P on x-axis meeting the line at $Q\left(x_{1}, y^{\prime}\right)$.

Thus $a x_{1}+b y^{\prime}+c=0$ so that

$$
y^{\prime}=-\frac{a}{b} x_{1}-\frac{c}{b}
$$

The point $P\left(x_{1}, y_{1}\right)$ is above the line if $\mathrm{y}_{1}>\mathrm{y}^{\prime}$ that is

$$
\begin{array}{ll}
& y_{1}-y^{\prime}>0 \\
\text { i.e. } & y_{1}-\left(-\frac{a}{b} x_{1}-\frac{c}{b}\right)>0 \\
\Rightarrow & a x_{1}+b y_{1}+c>0
\end{array}
$$

Similarly $P\left(x_{1}, y_{1}\right)$ is below the line if

$$
y_{1}-y^{\prime}<0 \quad \text { i.e. } y_{1}-\left(-\frac{a}{b} x_{1}-\frac{c}{b}\right)
$$

or $\quad a x_{1}+b y_{1}+c<0$
The point $P\left(x_{1}, y_{1}\right)$ is on the line if
$a x_{1}+b y_{1}+c=$
Corollary 1. The point P is above or below l respectively if $a x_{1}+b y_{1}+c$ and b have the same sign or have opposite signs.

Proof. If P is above l, then $y_{1}-y^{\prime}>0$ i.e., $\frac{a x_{1}+b y_{1}+c}{b}>0$
Thus $a x_{1}+b y_{1}+c$ and b have the same sign.
Similarly, P is below l if

$$
y_{1}-y^{\prime}<0 \quad \text { i.e., } \frac{a x_{1}+b y_{1}+c}{b}<0
$$

Thus $a x_{1}+b y_{1}+c$ and b have opposite signs.
Corollary 2. The point $P\left(x_{1}, y_{1}\right)$ and the origin are
(i) on the same side of l according as $a x_{1}+b y_{1}+c$ and c have the same sign.
(ii) on the opposite sides of l according as $a x_{1}+b y_{1}+c$ and c have opposite signs.

Proof. (i) The point $P\left(x_{1}, y_{1}\right)$ and $O(0,0)$ are on the same side of l if $a x_{1}+b y_{1}+c$ and $a .0+b .0+c$ have the same sign.
(ii) Proof is left as an exercise

Example 1: Check whether the point ($-2,4$) lies above or below the line

$$
\begin{equation*}
4 x+5 y-3=0 \tag{1}
\end{equation*}
$$

Solution: Here $b=5$ is positive. Also

$$
4(-2)+5(4)-3=-8+20-3=9>0
$$

(2)

The coefficient of y in (1) and the expression (2) have the same sign and so the point $(-2,4)$ lies above (1).

Example 2: \quad Check whether the origin and the point $P(5,-8)$ lie on the same side or on the opposite sides of the line:
$3 x+7 y+15=0$
(1)

Solution:

$$
\begin{aligned}
& \text { Here } \quad c=15 \\
& \text { For } P(5,-8), \\
& 3(5)+7(-8)+15=-26<0 \\
& \text { But } \quad c=15>0
\end{aligned}
$$

c and the expression (2) have opposite signs. Thus $O(0,0)$ and $P(5,-8)$ are on the opposite sides of (1).

Note: To check whether a point $P\left(x_{1}, y_{1}\right)$ lies above or below the line
 $$
a x+b y+c=0
$$
 we make the co-efficient of y positive by multiplying the equation by (-1) if needed.

4.4 TWO AND THREE STRAIGHT LINES

For any two distinct lines l_{1}, l_{2}.
$l_{1}: a_{1} x+b_{1} y+c=0$ and $l_{2}: a_{2} x+b_{2} y+c=0$, one and only one of the following holds:
(i) $l_{1} \| l_{2} \quad$ (ii) $l_{1} \perp l_{2}$
(iii) l_{1} and l_{2} are not related as (i) or (ii).
The slopes of l_{1} and l_{2} are $m_{1}=-\frac{a_{1}}{b_{1}}, m_{2}=-\frac{a_{2}}{b_{2}}$

Recall that:
Two non-parallel lines intersect each other at one and only one point.
(i) $\quad l_{1} \| l_{2} \Leftrightarrow$ slope of $l_{1}\left(m_{1}\right)=$ slope of $l_{2}\left(m_{2}\right)$.

$$
\begin{aligned}
& \Leftrightarrow-\frac{a_{1}}{b_{1}}=-\frac{a_{2}}{b_{2}} \\
& \Leftrightarrow-\frac{a_{1}}{b_{1}}=-\frac{a_{2}}{b_{2}} \quad \Leftrightarrow \quad a_{1} b_{2}-b_{1} a_{2}=0
\end{aligned}
$$

(ii) $l_{1} \perp l_{2} \Leftrightarrow m_{1} m_{2}=-1$

$$
\Leftrightarrow\left(-\frac{a_{1}}{b_{1}}\right)\left(-\frac{a_{2}}{b_{2}}\right)=-1 \quad \Leftrightarrow a_{1} a_{2}+b_{1} b_{2}=0
$$

(iii) If l_{1} and l_{2} are not related as in (i) and (ii), then there is no simple relation of the above forms.
4.4.1 The Point of Intersection of two Straight Lines
Let $\quad l_{1}: a_{1} x+b_{1} y+c_{1}=0$
(1)
and $l_{2}: a_{2} x+b_{2} y+c_{2}=0$
(2)
be two non-parallel lines. Then $a_{1} b_{2}-b_{1} a_{2} \neq 0$
Let $P\left(x_{1}, y_{1}\right)$ be the point of intersection of l_{1} and l_{2}. Then
$a_{1} x_{1}+b_{1} y_{1}+c_{1}=0$
(3)
$a_{2} x_{1}+b_{2} y_{1}+c_{2}=0$
(4)

Solving (3) and (4) simultaneously, we have
$\frac{x_{1}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y_{1}}{a_{2} c_{1}-a_{1} c_{2}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$x_{1}=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} \quad$ and $\quad y_{1}=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}$
is the required point of intersection.

Recall that:

Two non-parallel lines
intersect each other at
one and only one point.

Note: $a_{1} b_{2}-a_{2} b_{1} \neq 0$, otherwise $l_{1} \| l_{2}$

Examples 1: Find the point of intersection of the lines
$5 x+7 y=35$
(i)
$3 x-7 y=21$
(ii)

Solution: We note that the lines are not parallel and so they must intersect at a point. Adding (i) and (ii), we have

$$
8 x=56 \quad \text { or } \quad x=7
$$

Setting this value of x into (1), we find, $y=0$.
Thus $(7,0)$ is the point of intersection of the two lines.

Remember that:

* If the lines are parallel,
then solution does not exist $\left(\because a_{1} b_{2}-a_{2} b_{1}=0\right)$
* Before solving equations
one should ensure that
lines are not parallel.

4.4.2 Condition of Concurrency of Three Straight Lines

Three non-parallel lines

$$
\begin{align*}
& l_{1}: a_{1} x+b_{1} y+c_{1}=0 \tag{1}\\
& l_{2}: a_{2} x+b_{2} y+c_{2}=0 \tag{2}\\
& l_{3}: a_{3} x+b_{3} y+c_{3}=0 \tag{3}
\end{align*}
$$

$$
\text { are concurrent iff }\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

Proof: If the lines are concurrent then they have a common point of intersection $P\left(x_{1}, y_{1}\right)$ say. As $l_{1} \nmid l_{2}$, so their point of intersection (x, y) is

$$
x=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} \text { and } y=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}
$$

This point also lies on (3), so

$$
\begin{aligned}
& a_{3}\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\right)+b_{3}\left(\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}\right)+c_{3}=0 \\
& \text { or } \quad a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)+b_{3}\left(a_{2} c_{1}-a_{1} c_{2}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0
\end{aligned}
$$

An easier way to write the above equation is in the following determinant form:
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$

This is a necessary and sufficient condition of concurrency of the given three lines.

Example 1: Check whether the following lines are concurrent or not. If concurrent, find the point of concurrency.
$3 x-4 y-3=0$
(1)
$5 x+12 y+1=0$
$32 x+4 y-17=0$
(3)

Solution. The determinant of the coefficients of the given equations is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & -4 & -3 \\
5 & 12 & 1 \\
32 & 4 & -17
\end{array}\right|=\left|\begin{array}{lll}
18 & 32 & 0 \\
5 & 12 & 1 \\
117 & 208 & 0
\end{array}\right| \text {, by } \\
& \text { and }
\end{aligned} R_{1}+3 R_{2}+17 R_{2} .
$$

Thus the lines are concurrent.
The point of intersection of any two lines is the required point of concurrency. From (1) and (2), we have

$$
\begin{aligned}
& \frac{x}{-4+36}=\frac{y}{-15-3}=\frac{1}{36+20} \\
& x=\frac{32}{56}=\frac{4}{7} \quad \text { and } \quad y=\frac{-18}{56}=\frac{-9}{28} \text { i.e. }\left(\frac{4}{7}, \frac{-9}{28}\right)
\end{aligned}
$$

is the point of intersection.

4.4.3 Equation of Lines through the point of intersection of two lines

We can find a family of lines through the point of intersection of two non parallel lines l_{1} and l_{2}.
Let $\quad l_{1}: a_{1} x+b_{1} y+c_{1}=0$
and $l_{2}: a_{2} x+b_{2} y+c_{2}=0$

For a non-zero real h, consider the equation
Do you remember?
An infinite number of
lines can pass through
a point
$a_{1} x+b_{1} y+c_{1}+h\left(a_{2} x+b_{2} y+c_{2}\right)=0$
This, being a linear equation, represents a straight line. For different values of h, (3) represents different lines. Thus (3) is a family of lines.

If $\left(x_{1}, y_{1}\right)$ is any point lying on both (1) and (2), then it is their point of intersection. Since $\left(x_{1}, y_{1}\right)$ lies on both (1) and (2), we have

$$
a_{1} x+b_{1} y+c_{1}=0 \quad \text { and } \quad a_{2} x+b_{2} y+c_{2}=0
$$

From the above two equations, we note that (x_{1}, y_{1}) also lies on (3).
Thus (3) is the required family of lines through the point of intersection of (1) and (2). Since h can assume an infinite number of values, (3) represents an infinite number of lines.

A particular line of the family (3) can be determined if one more condition is given.
Example 2: Find the family of lines through the point of intersection of the lines

$$
\begin{align*}
& 3 x-4 y-10=0 \tag{1}\\
& x+2 y-10=0
\end{align*}
$$

(2)

Find the member of the family which is
(i) parallel to a line with slope $\frac{-2}{3}$
(ii) perpendicular to the line $l: 3 x-4 y+1=0$.

Solution: (i) A family of lines through the point of intersection of equations (1) and (2) is

$$
\begin{equation*}
3 x-4 y-10+k(x+2 y-10)=0 \tag{3}
\end{equation*}
$$

or $\quad(3+k) x+(-4+2 k) y+(-10-10 k)=0$
Slope m of (3) is given by: $m=-\frac{3+k}{-4+2 k}$
This is slope of any member of the family (3).
If (3) is parallel to the line with slope $-\frac{2}{3}$ then
$-\frac{3+k}{-4+2 k}=\frac{-2}{3}$ or $9+3 k=-8+4 k$ i.e., $k=17$
Substituting $k=17$ into (3), equation of the member of the family is $20 x+30 y-180=0$ i.e., $2 x+3 y-18=0$
(ii) Slope of $3 x-4 y+1=0$
is $\frac{3}{4}$. Since (3) is to be perpendicular to (4), we have $-\frac{3+k}{-4+2 k} \times \frac{3}{4}=-1$ or $9+3 k=-16+8 k \quad$ or $\quad k=5$
Inserting this value of k into (3), we get $4 x+3 y-30=0$ which is required equation of the line.

Theorem: Altitudes of a triangle are concurrent.

Proof. Let the coordinates of the vertices of $\triangle A B C$ be as shown in the figure

Then slope of $B C=\frac{y_{2}-y_{3}}{x_{2}-x_{3}}$

Therefore slope of the altitude $A D=-\frac{x_{2}-x_{3}}{y_{2}-y_{3}}$

Equation of the altitude $A D$ is

$$
\begin{align*}
& y-y_{1}=-\frac{x_{2}-x_{3}}{y_{2}-y_{3}}\left(x-x_{1}\right) \quad \text { (Point-slope form) } \\
& \text { or } \quad x\left(x_{2}-x_{3}\right)+y\left(y_{2}-y_{3}\right)-x_{1}\left(x_{2}-x_{3}\right)-y_{1}\left(y_{2}-y_{3}\right)=0 \tag{1}
\end{align*}
$$

Equations of the altitudes $B E$ and CF are respectively (by symmetry)

$$
\begin{align*}
& x\left(x_{3}-x_{1}\right)+y\left(y_{3}-y_{1}\right)-x_{2}\left(x_{3}-x_{1}\right)-y_{2}\left(y_{3}-y_{1}\right)=0 \tag{2}\\
& \text { and } \quad x\left(x_{1}-x_{2}\right)+y\left(y_{1}-y_{2}\right)-x_{3}\left(x_{1}-x_{2}\right)-y_{3}\left(y_{3}-y_{1}\right)=0 \tag{3}
\end{align*}
$$

The three lines (1), (2) and (3) are concurrent if and only if

$$
\mathrm{D}=\left|\begin{array}{lll}
x_{2}-x_{3} & y_{2}-y_{3} & -x_{1}\left(x_{2}-x_{3}\right)-y_{1}\left(y_{2}-y_{3}\right) \\
x_{3}-x_{1} & y_{3}-y_{1} & -x_{2}\left(x_{3}-x_{1}\right)-y_{2}\left(y_{3}-y_{1}\right) \\
x_{1}-x_{2} & y_{1}-y_{2} & -x_{3}\left(x_{1}-x_{2}\right)-y_{3}\left(y_{1}-y_{2}\right)
\end{array}\right| \text { is zero }
$$

Adding 2 nd and 3 rd rows to the $1^{\text {st }}$ row of the determihant, we have

$$
\left|\begin{array}{ccc}
0 & 0 & 0 \\
x_{3}-x_{1} & y_{3}-y_{1} & -x_{2}\left(x_{3}-x_{1}\right)-y_{2}\left(y_{3}-y_{1}\right) \\
x_{1}-x_{2} & y_{1}-y_{2} & -x_{3}\left(x_{1}-x_{2}\right)-y_{3}\left(y_{1}-y_{2}\right)
\end{array}\right|=0
$$

Thus the altitudes of a triangle are concurrent.
Theorem: Right bisectors of a triangle are concurrent.
Proof. Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the vertices of $\triangle A B C$

The midpoint D of $B C$ has coordinates

$$
\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)
$$

Since the slope of $B C$ is $\frac{y_{2}-y_{3}}{x_{2}-x_{3}}$, the slope of the right bisector $D O$ of $B C$ is $-\frac{x_{2}-x_{3}}{y_{2}-y_{3}}$

Equation of the right bisector DO of BC is

$$
\begin{aligned}
& y-\frac{y_{2}+y_{3}}{2}=-\frac{x_{2}-x_{3}}{y_{2}-y_{3}}\left(x-\frac{x_{2}+x_{3}}{2}\right) \text { (Point-slope form) } \\
& \text { or } \quad x\left(x_{2}-x_{3}\right)+y\left(y_{2}-y_{3}\right)-\frac{1}{2}\left(y_{2}^{2}-y_{3}^{2}\right)-\frac{1}{2}\left(x_{2}^{2}-x_{3}^{2}\right)=0
\end{aligned}
$$

By symmetry, equations of the other two right bisectors EO and FO are respectively:

$$
\begin{align*}
x\left(x_{3}-x_{1}\right)+y\left(y_{3}-y_{1}\right)-\frac{1}{2}\left(y_{3}^{2}-y_{1}^{2}\right)-\frac{1}{2}\left(x_{3}^{2}-x_{1}^{2}\right)=0 \tag{2}\\
\text { and } \quad x\left(x_{1}-x_{2}\right)+y\left(y_{1}-y_{2}\right)-\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right)-\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)=0 \tag{3}
\end{align*}
$$

The lines (1), (2) and (3) will be concurrent if and only if

$$
\left.\begin{array}{lll}
x_{2}-x_{3} & y_{2}-y_{3} & -\frac{1}{2}\left(y_{2}^{2}-y_{3}^{2}\right)-\frac{1}{2}\left(x_{2}^{2}-x_{3}^{2}\right) \\
x_{3}-x_{1} & y_{3}-y_{1} & -\frac{1}{2}\left(y_{3}^{2}-y_{1}^{2}\right)-\frac{1}{2}\left(x_{3}^{2}-x_{1}^{2}\right) \\
x_{1}-x_{2} & y_{1}-y_{2} & -\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right)-\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)
\end{array} \right\rvert\,=0
$$

Adding 2 nd and 3 rd rows to 1 st row of the determinant, we have

$$
\begin{array}{ccc}
0 & 0 & 0 \\
x_{3}-x_{1} & y_{3}-y_{1} & -\frac{1}{2}\left(y_{3}^{2}-y_{1}^{2}\right)-\frac{1}{2}\left(x_{3}^{2}-x_{1}^{2}\right) \\
x_{1}-x_{2} & y_{1}-y_{2} & -\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right)-\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)
\end{array}
$$

Thus the right bisectors of a triangle are concurrent.

Note: If equations of sides of the triangle are given, then intersection of any two lines gives a vertex of the triangle.

4.4.4 Distance of a point from a line

Theorem: The distance d from the point $P\left(x_{1}, y_{1}\right)$ to the line l

$$
\begin{equation*}
l: a x+b y+c=0 \tag{1}
\end{equation*}
$$

$$
\text { is given by } d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Proof: Let l be non-vertical and non-horizontal line. From P, draw
$P Q R \perp O x$ and $P M \perp l$.
Let the ordinate of Q be y_{2} so that coordinates of Q are $\left(x_{1}, y_{2}\right)$. Since Q lies on l, we have $a x_{1}+b y_{2}+c=0$

$$
\text { or } \quad y_{2}=\frac{-a x_{1}-c}{b}
$$

From the figure it is clear that $\angle M P Q=\alpha=$ the inclination of l.

Now $\tan \alpha=$ slope of $l=\frac{-a}{b}$
Therefore, $|\cos \alpha|=\frac{|b|}{\sqrt{a^{2}+b^{2}}}$
Thus $\quad|P M|=d=|P Q||\cos \alpha|=\left|y_{1}-y_{2}\right||\cos \alpha|$

$$
\begin{aligned}
& =\left|y_{1}-\frac{-a x_{1}-c}{b}\right| \cdot \frac{|b|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{\left|b y_{1}+a x_{1}+c\right|}{|b| \sqrt{a^{2}+b^{2}}} \cdot|b|=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

If l is horizontal, its equation is of the form $y=-\frac{c}{b}$ and the distance from $P\left(x_{1}, y_{1}\right)$ to l is simply the difference of the y-values.

$$
\therefore \quad d=\left|y_{1}-\left(-\frac{c}{b}\right)\right|=\left|\frac{b y_{1}+c}{b}\right|
$$

Similarly, if the line is vertical and has equation: $x=\frac{-c}{a}$ then $d=\left|\frac{a x_{1}+c}{a}\right|$
Note: If the point $P\left(x_{1}, y_{1}\right)$ lies on l, then the distance d is zero, since $\left(x_{1}, y_{1}\right)$ satisfies the equation i.e., $a x_{1}+b y_{1}+c=0$

4.4.5 Distance Between two Parallel Lines

The distance between two parallel lines is the distance from any point on one of the lines to the other line.

Example: Find the distance between the parallel lines
$l: 2 x-5 y+13=0$ and
$l_{2}: 2 x-5 y+6=0$

Solution: First find any point on one of the lines, say l_{1}. If $x=1$ lies on l_{1}, then
$y=3$ and the point $(1,3)$ lies on it. The distance d from $(1,3)$ to l_{2} is

$$
d=\frac{|2(1)-5(3)+6|}{\sqrt{(-2)^{2}}+5^{2}}=\frac{|2-15+6|}{\sqrt{4+25}}=\frac{7}{\sqrt{29}}
$$

Challenge!

Check the answer by
taking
(i) any other point on l_{1}
(ii) any point of l_{2} and
finding its distance from l_{1}

The distance between the parallel lines is $\frac{7}{\sqrt{29}}$.

4.4.6 Area of a Triangular Region Whose Vertices are Given

To find the area of a triangular region whose vertices are: $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $\quad R\left(x_{3}, y_{3}\right)$.
Draw perpendiculars $\overline{P L}, \overline{Q N}$ and $\overline{R M}$ on x-axis.
Area of the triangular region $P Q R$
$=$ Area of the trapezoidal region $P L M R$

+ Area of the trapezoidal region $R M N Q$

- Area of the trapezoidal region $P L N Q$.

$$
\begin{array}{ll}
=\frac{1}{2}(|\overrightarrow{P L}|+|\overline{R M}|)(|\overline{L M}|)+\frac{1}{2}(|\overline{R M}|+|\overline{Q N}|)(|\overline{M N}|)-\frac{1}{2}(|\overline{P L}|+|\overline{Q N}|)(|\overline{L N}|) \\
=\frac{1}{2}\left[\left(y_{1}+y_{3}\right)\left(x_{3}-x_{1}\right)+\left(y_{3}+y_{2}\right)\left(x_{2}-x_{3}\right)-\left(y_{1}+y_{2}\right)\left(x_{2}-x_{1}\right)\right] \\
=\frac{1}{2}\left(x_{3} y_{1}+x_{3} y_{3}-x_{1} y_{1}+x_{1} y_{3}+x_{2} y_{3}+x_{2} y_{2}-x_{3} y_{3}-x_{2} y_{1}-x_{2} y_{2}+x_{1} y_{1}+x_{1} y_{2}\right) \\
=\frac{1}{2}\left(x_{3} y_{1}-x_{1} y_{3}+x_{2} y_{3}-x_{3} y_{2}-x_{2} y_{1}+x_{1} y_{2}\right) & \text { Have you observed that: } \\
\begin{array}{lr}
\text { Thus required area A is given by: } & \Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] &
\end{array}
\end{array}
$$

Corollary: If the points P, Q and R are collinear, then

Note: In numerical problems, if sign of the area is negative, then it is to be omitted.

Example 1: \quad Find the area of the region bounded by the triangle with vertices $(a, b+c)$, $(a, b-c)$ and $(-a, c)$.
Solution: Required area Δ is

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
a & b-c & 1 \\
-a & c & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
0 & -2 c & 0 \\
-a & c & 1
\end{array}\right|, \text { by } R_{2}-R_{1}
\end{aligned}
$$

Trapezium:
A quadrilateral having two parallel and two
non-parallel sides.
Area of trapezoidal region:
$\frac{1}{2}$ (sum of \|

$$
\begin{aligned}
& =\frac{1}{2}[-2 c(a+a)], \text { expanding by the second row } \\
& =-2 c a
\end{aligned}
$$

Thus $\Delta=2 c a$

Example 2: \quad By considering the area of the region bounded by the triangle with vertices $A(1,4), B(2,-3)$ and $C(3,-10)$
check whether the three points are collinear or not
Solution: Area Δ of the region bounded by the triangle $A B C$ is
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}1 & 4 & 1 \\ 2 & -3 & 1 \\ 3 & -10 & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & 4 & 1 \\ 1 & -7 & 0 \\ 3 & -14 & 0\end{array}\right|$ by $R_{2}-R_{1}$ and $R_{3}-R_{1}$
$=\frac{1}{2}[1(-14+14)]$, expanding by third column
$=0$
Thus the points are collinear.

EXERCISE 4.3

1. Find the slope and inclination of the line joining the points:
(i) $(-2,4) ;(5,11)$
(ii) $(3,-2) ;(2,7)$
(iii) $(4,6) ;(4,8)$ Sketch each line in the plane.
2. In the triangle $A(8,6) B(-4,2), C(-2,-6)$, find the slope of (i) each side of the triangle
(ii) each median of the triangle
(iii) each altitude of the triangle.
3. By means of slopes, show that the following points lie on the same line:
(a) $(-1,-3) ;(1,5) ;(2,9)$
(b) $(4,-5) ;(7,5) ;(10,15)$
(c) $(-4,6) ;(3,8) ;(10,10)$
(d) $(a, 2 b):(c, a+b) ;(2 c-a, 2 a)$
4. Find k so that the line joining $A(7,3) ; B(k,-6)$ and the line joining $C(-4,5) ; D(-6,4)$ are (i) parallel (ii) perpendicular.
5. Using slopes, show that the triangle with its vertices $A(6,1), B(2,7)$ and $C(-6,-7)$ is a right triangle.
6. The three points $A(7,-1), B(-2,2)$ and $C(1,4)$ are consecutive vertices of a parallelogram. Find the fourth vertex.
7. The points $A(-1,2), B(3,-1)$ and $C(6,3)$ are consecutive vertices of a rhombus. Find the fourth vertex and show that the diagonals of the rhombus are perpendicular to each other.
8. Two pairs of points are given. Find whether the two lines determined by these points are :
(i) parallel
(ii) perpendicular
(iii) none.
(a) $(1,-2),(2,4)$ and $(4,1),(-8,2)$
(b) $(-3,4),(6,2)$ and $(4,5),(-2,-7)$
9. Find an equation of
(a) the horizontal line through $(7,-9)$
(b) the vertical line through $(-5,3)$
(c) the line bisecting the first and third quadrants.
(d) the line bisecting the second and fourth quadrants.
10. Find an equation of the line
(a) through $A(-6,5)$ having slope 7
(b) through $(8,-3)$ having slope 0
(c) through $(-8,5)$ having slope undefined
(d) through ($-5,-3$) and ($9,-1$)
(e) y-intercept: -7 and slope: -5
(f) x-intercept: -3 and y-intercept: 4
(g) x-intercept: -9 and slope: -4
11. Find an equation of the perpendicular bisector of the segment joining the points $A(3,5)$ and $B(9,8)$.
12. Find equations of the sides, altitudes and medians of the triangle whose vertices are $A(-3,2), B(5,4)$ and $C(3,-8)$.
13. Find an equation of the line through ($-4,-6$) and perpendicular to a line having slope $\frac{-3}{2}$
14. Find an equation of the line through $(11,-5)$ and parallel to a line with slope -24 .
15. The points $A(-1,2), B(6,3)$ and $C(2,-4)$ are vertices of a triangle. Show that the line joining the midpoint D of $A B$ and the midpoint E of $A C$ is parallel to $B C$ and $D E=\frac{1}{2} B C$.
16. A milkman can sell 560 litres of milk at Rs. 12.50 per litre and 700 litres of milk at Rs. 12.00 per litre. Assuming the graph of the sale price and the milk sold to be a straight line, find the number of litres of milk that the milkman can sell at Rs. 12.25 per litre.
17. The population of Pakistan to the nearest million was 60 million in 1961 and 95 million in 1981. Using t as the number of years after 1961, find an equation of the line that gives the population in terms of t. Use this equation to find the population in (a) 1947 (b) 1997.
18. A house was purchased for Rs. 1 million in 1980. It is worth Rs. 4 million in 1996. Assuming that the value increased by the same amount each year, find an equation that gives the value of the house after t years of the date of purchase. What was its value in 1990?
19. Plot the Celsius (C) and Fahrenheit (F) temperature scales on the horizontal axis and the vertical axis respectively. Draw the line joining the freezing point and the boiling point of water. Find an equation giving F temperature in terms of C.
20. The average entry test score of engineering candidates was 592 in the year 1998 while the score was 564 in 2002. Assuming that the relationship between time and score is linear, find the average score for 2006.
21. Convert each of the following equation into
(i) Slope intercept form (ii) two intercept form (iii) normal form
(a) $2 x-4 y+11=0$
(b) $4 x+7 y-2=0$
(c) $15 y-8 x+13=0$

Also find the length of the perpendicular from $(0,0)$ to each line.
22. In each of the following check whether the two lines are
(i) parallel
(ii) perpendicular
(iii) neither parallel nor perpendicular
(a) $2 x+y-3=0 \quad ; \quad 4 x+2 y+5=0$
(b) $3 y=2 x+5 \quad ; \quad 3 x+2 y-8=0$
(c) $4 y+2 x-1=0 ; \quad x-2 y-7=0$
(d) $4 x-y+2=0 \quad ; \quad 12 x-3 y+1=0$
(e) $12 x+35 y-7=0 ; \quad 105 x-36 y+11=0$
23. Find the distance between the given parallel lines. Sketch the lines. Also find an equation of the parallel line lying midway between them.
(a) $3 x-4 y+3=0 ; 3 x-4 y+7=0$
(b) $12 x+5 y-6=0 ; \quad 12 x+5 y+13=0$
(c) $x+2 y-5=0 \quad ; \quad 2 x+4 y=1$
24. Find an equation of the line through $(-4,7)$ and parallel to the line $2 x-7 y+4=0$.
25. Find an equation of the line through $(5,-8)$ and perpendicular to the join of $A(-15,-8)$, $B(10,7)$.
26. Find equations of two parallel lines perpendicular to $2 x-y+3=0$ such that the product of the x-and y-intercepts of each is 3 .
27. One vertex of a parallelogram is (1, 4); the diagonals intersect at $(2,1)$ and the sides have slopes 1 and $\frac{-1}{7}$. Find the other three vertices.
28. Find whether the given point lies above or below the given line
(a) $(5,8) ; 2 x-3 y+6=0$
(b) $(-7,6) ; 4 x+3 y-9=0$
29. Check whether the given points are on the same or opposite sides of the given line.
(a) $(0,0)$ and $(-4,7) ; 6 x-7 y+70=0$
(b) $(2,3)$ and $(-2,3) ; 3 x-5 y+8=0$
30. Find the distance from the point $P(6,-1)$ to the line $6 x-4 y+9=0$.
31. Find the area of the triangular region whose vertices are $A(5,3), B(-2,2), C(4,2)$.
32. The coordinates of three points are $A(2,3), B(-1,1)$ and $C(4,-5)$. By computing the area bounded by $A B C$ check whether the points are collinear.

4.5. ANGLE BETWEEN TWO LINES

Let l_{1} and l_{2} be two intersecting lines, which meet at a point P. At the point P two supplementary angles are formed by the lines l_{1} and l_{2}.

Unless $l_{1} \perp l_{2}$ one of the two angles is acute. The angle from l_{1} to l_{2} is the angle θ through which l_{1} is rotated anti-clockwise about the point P so that it coincides with l_{2}

In the figure below θ is angle of intersection of the two lines and it is measured from l_{1} to l_{2} in counterclockwise direction, ψ is also angle of intersection but it is measured from l_{2} to l_{1}.

With this convention for angle of intersection, it is clear that the inclination of a line is the angle measured in the counterclockwise direction from the positive x-axis to the line, and it tallies with the earlier definition of the inclination of a line.

Theorem: Let l_{1} and l_{2} be two non-vertical lines such that they are not perpendicular to each other. If m_{1} and m_{2} are the slopes of l_{1} and l_{2} respectively: the angle θ from l_{1} to l_{2} is given by;

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
$$

Proof: From the figure, we have

$$
\alpha_{2}=\alpha_{1}+\theta
$$

$$
\text { or } \quad \theta=\alpha_{2}-\alpha_{1}
$$

$$
\tan \theta=\tan \left(\alpha_{2}-\alpha_{1}\right)=\frac{\tan \alpha_{2}-\tan \alpha_{1}}{1+\tan \alpha_{1} \tan \alpha_{2}} \quad=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
$$

Corollary 1. $l_{1} \| l_{2}$ if and only if $m_{1}=m_{2}$

$$
\begin{aligned}
& \Leftrightarrow \quad \tan \theta=0=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} \\
& \Leftrightarrow \quad m_{2}=m_{1} \\
& \text { Corollary 2. } \quad l_{1} \perp l_{2} \text { iff } 1+m_{1} m_{2}=0
\end{aligned}
$$

$$
\Leftrightarrow \quad \tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}=\tan \frac{\pi}{2}=\infty \quad \Leftrightarrow \quad 1+m_{1} m_{2}=0
$$

These two results have already been stated in 4.3.1.
Example 1: Find the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$.

Solution: Here $m_{2}=\frac{5}{2}, m_{1}=\frac{-7}{3}$. If θ is measure of the required angle, then

$$
\tan \theta=\frac{\frac{5}{2}-\left(\frac{-7}{3}\right)}{1+\frac{5}{2}\left(\frac{-7}{3}\right)}=\frac{29}{-29}=-1
$$

Thus $\theta=135^{\circ}$
Example 2: Find the angles of the triangle whose vertices are

$$
A(-5,4), B(-2,-1), C(7,-5)
$$

Solution: Let the slopes of the sides $A B, B C$ and $C A$ be denoted by m_{c}, m_{a}, m_{b} respectively. Then
$m_{c}=\frac{4+1}{-5+2}=\frac{-5}{3}, m_{a}=\frac{-5+1}{7+2}=\frac{-4}{9}, m_{b}=\frac{-5-4}{7+5}=\frac{-3}{4}$

Now angle A is measured from $A B$ to $A C$.

$$
\tan A=\frac{m_{b}-m_{c}}{1+m_{b} m_{c}}=\frac{\frac{-3}{4}+\frac{5}{3}}{1+\left(\frac{-3}{4}\right)\left(\frac{-5}{3}\right)}=\frac{11}{27} \quad \text { or } \quad m \underline{A}=22.2^{\circ}
$$

The angle B is measured from $B C$ to $B A$

$$
\therefore \quad \tan B=\frac{m_{c}-m_{a}}{1+m_{c} m_{a}}=\frac{\frac{-5}{3}+\frac{4}{9}}{1+\left(\frac{-5}{3}\right)\left(\frac{-4}{9}\right)}=\frac{-33}{47} \quad \text { or } \quad m \underline{B}=144.9^{\circ}
$$

The angle C is measured from $C A$ to $C B$.

$$
\therefore \quad \tan A=\frac{m_{a}-m_{b}}{1+m_{a} m_{b}}=\frac{\frac{-4}{9}+\frac{3}{4}}{1+\left(\frac{-4}{9}\right)\left(\frac{-3}{4}\right)}=\frac{11}{48} \quad \text { or } \quad m \underline{C}=12.9^{\circ}
$$

4.5.1 Equation of a Straight Line in Matrix form

It is easy to solve two or three simultaneous linear equations by elementary methods If the number of equations and variables become large, the solution of the equations by ordinary method becomes very difficult. In such a case, given equations are written in matrix form and solved.

One Linear Equation:

A linear equation

$$
\begin{equation*}
l: a x+b y+c=0 \tag{1}
\end{equation*}
$$

in two variables x and y has its matrix form as:

$$
[a x+b y]=[-c]
$$

or

$$
\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=[-c]
$$

or
$A X=C$
where

$$
A=\left[\begin{array}{ll}
a & b
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } C=[-c]
$$

A System of Two Linear Equations:

A system of two linear equations

$$
\left.\begin{array}{l}
l_{1}: a_{1} x+b_{1} y+c=0 \tag{2}\\
l: a_{2} x+b_{2} y+c=0
\end{array}\right\}
$$

in two variables x and y can be written in matrix form as:
or

$$
\begin{align*}
& {\left[\begin{array}{l}
a_{1} x+b_{1} y \\
a_{2} x+b_{2} y
\end{array}\right]=\left[\begin{array}{l}
-c_{1} \\
-c_{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-c_{1} \\
-c_{2}
\end{array}\right]} \tag{3}\\
& A X=C
\end{align*}
$$

where

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{l}
-c_{1} \\
-c_{2}
\end{array}\right]
$$

Equations (2) have a solution iff det $A \neq 0$.

A System of Three Linear Equations:

A system of three linear equations

$$
\left.\begin{array}{l}
l_{1}: a_{1} x+b_{1} y+c_{1}=0 \\
l_{2}: a_{2} x+b_{2} y+c_{2}=0 \tag{5}\\
l_{3}: a_{3} x+b_{3} y+c_{3}=0
\end{array}\right\}
$$

in two variables y and y takes the matrix form as

$$
\left[\begin{array}{l}
a_{1} x+b_{1} y+c_{1} \\
a_{2} x+b_{2} y+c_{2} \\
a_{3} x+b_{3} y+c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\text { or } \quad\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

If the matrix

$$
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \text { is singular, then the lines (5) are concurrent }
$$

Example 1: Express the system

$$
\left.\begin{array}{l}
3 x+4 y-7=0 \\
2 x-5 y+8=0 \\
x+y-3=0
\end{array}\right\}
$$

in matrix form and check whether the three lines are concurrent

Solution. The matrix form of the system is

$$
\left[\begin{array}{ccc}
3 & 4 & -7 \\
2 & -5 & 8 \\
1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Coefficient matrix of the system is

$$
A=\left[\begin{array}{ccc}
3 & 4 & -7 \\
2 & -5 & 8 \\
1 & 1 & -3
\end{array}\right] \text { and det } A=\left|\begin{array}{ccc}
0 & 1 & 2 \\
0 & -7 & 14 \\
1 & 1 & -3
\end{array}\right| \quad \begin{gathered}
\text { by } R_{1}-3 R_{3} \\
\text { and } R_{2}-2 R_{3}
\end{gathered}
$$

and $\operatorname{det} A=1(14+14)=28 \neq 0$
As A is non-singular, so the lines are not concurrent.
Example 2:
Find a system of linear equations corresponding to the matrix form

$$
\left[\begin{array}{lll}
1 & 2 & 5 \tag{1}\\
3 & 5 & 1 \\
4 & 7 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Are the lines represented by the system concurrent?
Solution: Multiplying the matrices on the L.H.S. of (1), we have

$$
\left[\begin{array}{l}
x+2 y+5 \tag{2}\\
3 x+5 y+1 \\
4 x+7 y+6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By using the definition of equality of two matrices, we have from (2),

$$
\left.\begin{array}{l}
x+2 y+5=0 \\
3 x+5 y+1=0 \\
4 x+7 y+6=0
\end{array}\right]
$$

as the required system of equations. The coefficient matrix A of the system is such that

$$
\operatorname{det} A=\left|\begin{array}{lll}
1 & 2 & 5 \\
3 & 5 & 1 \\
4 & 7 & 6
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & -14 \\
0 & -1 & -14
\end{array}\right|=0
$$

Thus the lines of the system are concurrent

EXERCISE 4.4

1. Find the point of intersection of the lines
(i) $x-2 y+1=0$ and $2 x-y+2=0$
(ii) $3 x+y+12=0$ and $x+2 y-1=0$
(iii) $x+4 y-12=0$ and $x-3 y+3=0$
2. Find an equation of the line through
(i) the point $(2,-9)$ and the intersection of the lines $2 x+5 y-8=0 \quad$ and $\quad 3 x-4 y-6=0$
(ii) the intersection of the lines

$$
x-y-4=0 \quad \text { and } \quad 7 x+y+20=0 \quad \text { and }
$$

(a) parallel
(b) perpendicular
to the line $6 x+y-14=0$
(iii) through the intersection of the lines $x+2 y+3=0,3 x+4 y+7=0$ and making equal intercepts on the axes.
3. Find an equation of the line through the intersection of $16 x-10 y-33=0 ; 12 x-14 y-29=0$ and the intersection of $x-y+4=0 \quad ; \quad x-7 y+2=0$
4. Find the condition that the lines $y=m_{1} x+c_{1} ; y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are concurrent.
5. Determine the value of p such that the lines $2 x-3 y-1=0$,
$3 x-y-5=0$ and $3 x+4 y+8=0$ meet at a point.
6. Show that the lines $4 x-3 y-8=0,3 x-4 y-6=0$ and $x-y-2=0$ are concurrent and the third-line bisects the angle formed by the first two lines.
7. The vertices of a triangle are $A(-2,3), B(-4,1)$ and $C(3,5)$. Find coordinates of the
(i) centroid
(ii) orthocentre
(iii) circumcentre of the triangle
Are these three points collinear?
8. Check whether the lines
$4 x-3 y-8=0$;
$3 x-4 y-6=0 ;$
$x-y-2=0$
are concurrent. If so, find the point where they meet
9. Find the coordinates of the vertices of the triangle formed by the lines
$x-2 y-6=0 ; \quad 3 x-y+3=0 ; \quad 2 x+y-4=0$
Also find measures of the angles of the triangle.
10. Find the angle measured from the line l_{1} to the line l_{2} where
(a) $\quad l_{1}: \operatorname{Joining}(2,7)$ and $(7,10)$
l_{2} : Joining $(1,1)$ and $(-5,3)$
$l_{1}: \operatorname{Joining}(3,-1)$ and $(5,7)$
$l_{2}:$ Joining $(2,4)$ and $(-8,2)$
Also find the acute angle in each case.
(c) $\quad l_{1}:$ Joining $(1,-7)$ and $(6,-4)$
$l_{2}:$ Joining $(-1,2)$ and $(-6,-1)$
$l_{1}:$ Joining $(-9,-1)$ and $(3,-5)$
$l_{2}:$ Joining $(2,7)$ and $(-6,-7)$
11. Find the interior angles of the triangle whose vertices are
(a) $\quad A(-2,11), B(-6,-3),(4,-9)$
(b) $\quad A(6,1), \quad B(2,7), C(-6,-7)$
(c) $\quad A(2,-5), \quad B(-4,-3),(-1,5)$
(d) $\quad A(2,8), \quad B(-5,4), C(4,-9)$
12. Find the interior angles of the quadrilateral whose vertices are $A(5,2), B(-2,3)$, $C(-3,-4)$ and $D(4,-5)$
13. Show that the points
$A(0,0), B(2,1), C(3,3), D(1,2)$ are the vertices of a rhombus.
Find its interior angles.
14. Find the area of the region bounded by the triangle whose sides are

$$
7 x-y-10=0 ; \quad 10 x+y-14=0 ; \quad 3 x+2 y+3=0
$$

15. The vertices of a triangle are $A(-2,3), B(-4,1)$ and $C(3,5)$. Find the centre of the circumcircle of the triangle.
16. Express the given system of equations in matrix form. Find in each case whether the lines are concurrent.
(a) $\quad x+3 y-2=0 ; \quad 2 x-y+4=0 ; \quad x-11 y+14=0$
(b) $\quad 2 x+3 y+4=0 ; \quad x-2 y-3=0 ; \quad 3 x+y-8=0$
(c) $3 x-4 y-2=0 ; \quad x+2 y-4=0 ; \quad 3 x-2 y+5=0$.
17. Find a system of linear equations corresponding to the given matrix form. Check whether the lines represented by the system are concurrent.
(a) $\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 6\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

4.6 HOMOGENEOUS EQUATION OF THE SECOND DEGREE IN TWO VARIABLES

We have already seen that if a graph is a straight line, then its equation is a linear equation in the variables x and y. Conversely, the graph of any linear equation in x and y is a straight line.

Suppose we have two straight lines represented by

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1}=0 \tag{1}\\
& a_{2} x+b_{2} y+c_{2}=0 \tag{2}
\end{align*}
$$

and
Multiplying equations (1) and (2), we have

$$
\begin{equation*}
\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0 \tag{3}
\end{equation*}
$$

It is a second degree equation in x and y.
Equation (3) is called joint equation of the pair of lines (1) and (2). On the other hand, given an equation of the second degree in x and y, say

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \tag{4}
\end{equation*}
$$

where $a \neq 0$, represents equations of a pair of lines if (4) can be resolved into two linear factors. In this section, we shall study special joint equations of pairs of lines which pass through the origin.

Let $y=m_{1} x$ and $y=m_{2} x$ be two lines passing through the origin. Their joint equation is: $\left(y-m_{1} x\right)\left(y-m_{2} x\right)=0$
or

$$
\begin{equation*}
y^{2}-\left(m_{1}+m_{2}\right) x y+m_{1} m_{2} x^{2}=0 \tag{5}
\end{equation*}
$$

Equation (5) is a special type of a second degree homogeneous equation.

4.6.1 Homogeneous Equation

Let

$$
\begin{equation*}
f(x, y)=0 \tag{1}
\end{equation*}
$$

be any equation in the variables x and y. Equation (1) is called a homogeneous equation of degree n (a positive integer) if

$$
f(k x, k y)=k^{n} f(x, y)
$$

for some real number k.
For example, in equation (5) above if we replace x and y by $k x$ and $k y$ respectively, we have
or

$$
\begin{aligned}
& k^{2} y^{2}-k^{2}\left(m_{1}+m_{2}\right) x y+k^{2} m_{1} m_{2} x^{2}=0 \\
& k^{2}\left[y^{2}-\left(m_{1}+m_{2}\right) x y+m_{1} m_{2} x^{2}\right]=0 \quad \text { i.e., } \quad k^{2} f(x, y)=0
\end{aligned}
$$

Thus (5) is a homogeneous equation of degree 2.

$$
a x^{2}+2 h x y+b y^{2}=0
$$

A general second degree homogeneous equation can be written as:

$$
a x^{2}+2 h x y+b y^{2}=0
$$

provided a, h and b are not simultaneously zero.

Theorem: Every homogenous second degree equation

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}=0 \tag{1}
\end{equation*}
$$

represents a pair of lines through the origin. The lines are
(i) real and distinct, if $h^{2}>a b$
(ii) real and coincident, if $h a b$
(iii) imaginary, if $h^{2}<a b$

Proof: Multiplying (1) by b and re-arranging the terms, we have

$$
b^{2} y^{2}+2 b h x y+a b x^{2}=0
$$

or
$+2 b h x y+h^{2} x^{2}-h^{2} x^{2}+a b x^{2}$
or $\quad\left(b y+h x+x \sqrt{h^{2}-a b}\right)\left(b y+h x-x \sqrt{h^{2}-a b}\right)=0$
Thus (1) represents a pair of lines whose equations are:

$$
\begin{align*}
& b y+x\left(h+\sqrt{h^{2}-a b}\right)=0 \tag{2}\\
& \text { and } \quad b y+x\left(h-\sqrt{h^{2}-a b}\right)=0 \\
& \text { Clearly, the lines (2) and (3) are }
\end{align*}
$$

(i) real and distinct if $h^{2}>a b$. (ii) real and coincident, if $h^{2}=a b$.
(iii) imaginary, if $h^{2}<a b$.

It is interesting to note that even in case the lines are imaginary, they intersect in a real point viz $(0,0)$ since this point lies on their joint equation (1).

Example: Find an equation of each of the lines represented by

$$
20 x^{2}+17 x y-24 y^{2}=0
$$

Solution. The equation may be written as

$$
\begin{aligned}
& 24\left(\frac{y}{x}\right)^{2}-17\left(\frac{y}{x}\right)-20=0 \\
& \Rightarrow \frac{y}{x}=\frac{17 \pm \sqrt{289+1920}}{48}=\frac{17 \pm 47}{48}=\frac{4}{3}, \frac{-5}{8} \\
& \Rightarrow y=\frac{4}{3} x \quad \text { and } \quad y=\frac{-5}{8} x \\
& \Rightarrow 4 x-3 y=0 \quad \text { and } \quad \\
& \hline
\end{aligned}
$$

4.6.2 To find measure of the angle between the lines represented by

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}=0 \tag{1}
\end{equation*}
$$

We have already seen that the lines represented by (1) are

$$
\begin{array}{ll}
b y+x\left(h+\sqrt{h^{2}-a b}\right)=0 \\
\text { and } & b y+x\left(h-\sqrt{h^{2}-a b}\right)=0 \tag{3}
\end{array}
$$

Now slopes of (2) and (3) are respectively given by:

$$
\left.\begin{array}{l}
m_{1}=\frac{-\left(h+\sqrt{h^{2}-a b}\right)}{b}, \text { and } \quad m_{2}=\frac{-\left(h-\sqrt{h^{2}-a b}\right)}{b} \\
\text { Therefore, } m_{1}+m_{2}=\frac{-2 h}{b}
\end{array} \quad \text { and } m_{1} m_{2}=\frac{a}{b}\right) ~ \$
$$

If θ is measure of the angle between the lines (2) and (3), then

$$
\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}=\frac{\sqrt{\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}}}{1+m_{1} m_{2}}=\frac{\sqrt{\frac{4 h^{2}}{b^{2}}-\frac{4 a}{b}}}{1+\frac{a}{b}}=\frac{2 \sqrt{h^{2}-a b}}{a+b}
$$

The two lines are parallel, if $\theta=0$, so that $\tan \theta=0$ which implies $\boldsymbol{h}^{2}-\boldsymbol{a} \boldsymbol{b}=\mathbf{0}$, which is the condition for the lines to be coincident.
If the lines are orthogonal, then $\theta=90^{\circ}$, so that $\tan \theta$ is not defined. This implies $a+b=0$. Hence the condition for (1) to represent a pair of orthogonal (perpendicular) lines is that sum of the coefficients of \boldsymbol{x}^{2} and $\boldsymbol{y}^{\mathbf{2}}$ is $\mathbf{0}$.

Example 1: Find measure of the angle between the lines represented by
$x^{2}-x y-6 y^{2}=0$

Solution. Here $a=1, h=-\frac{1}{2}, b=-6$

If θ is measure of the angle between the given lines, then

$$
\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}=\frac{2 \sqrt{\frac{1}{4}+6}}{-5}=-1 \Rightarrow \theta=135^{\circ}
$$

Acute angle between the lines $=180^{\circ}-\theta=180^{\circ}-135^{\circ}=45^{\circ}$

Example2: Find a joint equation of the straight lines through the origin perpendicular to the lines represented by

$$
\begin{equation*}
x^{2}+x y-6 y^{2}=0 \tag{1}
\end{equation*}
$$

Solution: (1) may be written as

$$
(x-2 y)(x+3 y)=0
$$

Thus the lines represented by (1) are

$$
\begin{equation*}
x-2 y=0 \tag{2}
\end{equation*}
$$

and $\quad x+3 y=0$
The line through $(0,0)$ and perpendicular to (2) is

$$
\begin{equation*}
y=-2 x \quad \text { or } \quad y+2 x=0 \tag{3}
\end{equation*}
$$

Similarly, the line through $(0,0)$ and perpendicular to (3) is

$$
\begin{equation*}
y=3 x \quad \text { or } \quad y-3 x=0 \tag{4}
\end{equation*}
$$

(5)

Joint equation of the lines (4) and (5) is

$$
(y+2 x)(y-3 x)=0 \quad \text { or } \quad y^{2}-x y-6 x^{2}=0
$$

EXERCISE 4.5

Find the lines represented by each of the following and also find measure of the, angle between them (Problems 1-6):

1. $10 x^{2}-23 x y-5 y^{2}=0$
2. $3 x^{2}+7 x y+2 y^{2}=0$
3. $9 x^{2}+24 x y+16 y^{2}=0$
4. $2 x^{2}+3 x y-5 y^{2}=0$
5. $6 x^{2}-19 x y+15 y^{2}=0$
6. $x^{2}+2 x y \sec \alpha+y^{2}=0$
7. Find a joint equation of the lines through the origin and perpendicular to the lines:
$x^{2}-2 x y \tan \alpha-y^{2}=0$
8. Find a joint equation of the lines through the origin and perpendicular to the lines:

$$
a x^{2}+2 h x y+b y^{2}=0
$$

9. Find the area of the region bounded by: $10 x^{2}-x y-21 y^{2}=0$ and $\quad x+y+1=0$
