

After completion of this unit, the students will be able to:

- Define and depict two converging (non-parallel) lines and find the angle between them without producing the lines.
- Bisect the angle between the two converging lines without producing them.
- Construct a square
 - When its diagonal is given.
 - When the difference between its diagonal and side is given.
 - When the sum of its diagonal and side is given.
- Construct a rectangle
 - When two sides are given.
 - When the diagonal and a side are given.
- Construct a rhombus
 - When one side and the base angle are given.
 - When one side and a diagonal are given.
- Construct a parallelogram
 - When two diagonals and the angle between them is given.
 - When two adjacent sides and the angle included between them is given.
- Construct a kite
 - When two unequal sides and a diagonal are given.
- Construct a regular pentagon
 - When a side is given.
- Construct a regular hexagon
 - When a side is given.
- Construct a right angled triangle
 - When hypotenuse and one side are given.
 - When hypotenuse and the vertical height from its vertex to the hypotenuse are given.

8.1 Define and depict two Converging (non-parallel) lines and find the angle between them without producing the lines 8.1.1 Definition:

Lines intersecting at a single point are called converging lines.

In the following figure, \overrightarrow{AB} and \overrightarrow{CD} are converging lines and \overrightarrow{LM} is a transversal intersecting these lines. Find the angle between converging lines.

Steps of construction:

- i. \overrightarrow{AB} and \overrightarrow{CD} are two converging lines and \overrightarrow{LM} is the transversal which intersects these lines at point O and N.
- ii. Draw $m\angle 2 = m\angle 1$ with compass and straightedge. Thus \overrightarrow{SOR} is parallel to \overrightarrow{CD} .
- iii. Since \overrightarrow{CD} and \overrightarrow{SR} are parallel, therefore $m \angle BOR$ is the required angle.
- iv. Hence, angle between converging lines is 15° which is measured by using protractor.

8.1.2 Bisect the angle between two converging lines without producing them

We can find the angle bisector of two converging lines by performing the following steps:

Steps of construction:

- i. \overrightarrow{AB} and \overrightarrow{CD} are two converging lines.
- ii. Draw two arcs of same radius from points E and F above \overrightarrow{AB} by using compass and draw \overrightarrow{GH} touching these arcs.
- iii. Also draw two arcs of same radius from points I and J below \overrightarrow{CD} by using compass and draw \overrightarrow{KL} touching these arcs.
- iv. $\angle HOL$ is the angle between the two convergent lines.
- **v.** Draw the bisector \overrightarrow{OM} of $\angle HOL$ which is the required bisector of given converging lines.

8.1.3 Construct a square

(a) When its diagonal is given.

Example 1:

Draw a square ABCD such that its diagonal is 4cm

Solution:

One of the diagonals of the square ABCD is \overline{BD} and $m\overline{BD} = 4cm$.

[Note: In a square both the diagonals are of same length]

- i. Draw the diagonal $m\overline{BD} = 4cm$.
- ii. Draw a perpendicular bisector \overrightarrow{LM} of the diagonal \overline{BD} cutting it at point O.
- iii. With O as centre and radius $m \, \overline{OB}$, draw arcs cutting \overleftrightarrow{LM} at A and C.
- iv. Join A with B and D, and C with B and D, which gives the required square ABCD

UNIT - 8

PRACTICAL GEOMETRY

(b) When the difference between its diagonal and side is given

Example 2:

Draw a square ABCD when the difference between its diagonal and side is equal to 2cm.

Steps of construction:

- i. Draw \overrightarrow{PQ} and mark a point as A on it.
- ii. Construct $m \angle QAN = 90^{\circ}$ at A.

D.

2cm

- iv. Draw an arc of radius = $m\overline{LM}$ and centre at M which intersects \overrightarrow{AQ} at B.
- **v.** Draw an arc of radius = $m\overline{AB}$ and centre at A which intersects \overrightarrow{AN} at D.
- vi. Draw two arcs each of radius = $m\overline{AB}$, one centre at B and second centre at D. These arcs will intersect at point C.
- **vii.** Join *C* with *D* and *B*. Hence, *ABCD* is the required square.

(c) When the sum of its diagonal and side is given Example 3:

Draw a square ABCD when the sum of its diagonal and side is equal to 3cm.

Solution:

- i. Draw \overrightarrow{PQ} and mark a point as S on it.
- ii. Construct $m \angle QSR = 90^{\circ}$ at point S.
- iii. Draw an arc of radius 3cm and centre at S intersecting \overrightarrow{SR} at L.
- iv. Draw an arc of radius 3cm and centre at S intersecting \overrightarrow{SQ} at A.

v. Draw an arc of radius $= m\overline{AL}$ and centre at S which intersects \overrightarrow{SQ} at B. \overline{AB} is the side of the required square.

- **vi.** Draw perpendicular \overrightarrow{BM} at B.
- **vii.** Draw an arc of radius $m\overline{AB}$ and centre at B which intersects \overrightarrow{BM} at C.
- **viii.** Draw two arcs, each of radius $m\overline{AB}$, one with centre at A and second with centre at C which intersects at D.
- ix. Join C with D and D with AHence, ABCD is the required square.

8.1.4 Construct a rectangle

(a) When two sides are given

Example 4:

Construct a rectangle ABCD in which $m\overline{AB}=4~cm$ and $m\overline{BC}=5~cm$.

Solution:

Steps of construction:

- i. Draw $m\overline{AB} = 4cm$.
- ii. Construct $m \angle A = m \angle B = 90^{\circ}$ and draw \overrightarrow{AG} and \overrightarrow{BH} .
- iii. Draw an arc with centre at A and of radius 5cm which intersects the \overrightarrow{AG} at point D.
- iv. Draw an arc with centre at B and of radius 5cm which intersects the \overrightarrow{BH} at point C.
- **v.** Join C with D.

Hence, ABCD is the required rectangle.

Note: Sum of interior angles of a quadrilateral is equal to 360°

(b) When the diagonal and a side are given Example 5:

Construct a rectangle ABCD when $m\overline{AB} = 3cm$ and $m\overline{AC} = 5cm$

Solution:

Steps of construction:

- i. Draw $m\overline{AB} = 3cm$.
- ii. Construct $m \angle A = m \angle B = 90^{\circ}$ and draw \overrightarrow{AX} and \overrightarrow{BY} .
- iii. With centre at A and radius 5 cm draw an arc which intersects \overrightarrow{BY} at the point C.
- iv. With centre at B and radius 5cm draw an arc which intersects \overrightarrow{AX} at the point D and joint C and D.

Hence, ABCD is the required rectangle.

8.1.5 Construct a rhombus

When one side and the base angle are given.

Example 6: Construct a rhombus PQRS when the $m\overline{PQ} = 4cm$ and $m\angle P = 45^{\circ}$ Solution:

Steps of construction:

- i. Draw $m\overline{PQ} = 4cm$.
- ii. Construct $m \angle P = 45^{\circ}$ and draw \overrightarrow{PX} .
- iii. Draw an arc with centre at P and radius 4cm which intersects \overrightarrow{PX} at S.

- iv. Draw an arc with centre at S and radius 4cm.
- **v.** Draw an arc with centre at *Q* and radius *4cm* which intersects the previous arc drawn from S at R.
- **vi.** Join R with S and Q.

Hence, *PQRS* is the required rhombus.

(b) When one side and a diagonal are given.

Example 7:

Construct a rhombus PQRS, when $m\overline{PQ} = 3cm$ and $m\overline{PR} = 5cm$.

Solution:

Steps of construction:

- i. Draw $m\overline{PQ} = 3cm$.
- ii. Draw an arc with centre at P and radius 5cm.
- iii. Draw an arc with centre at Q and radius 3cm which intersects the previous arc at R.
- iv. Draw an arc with centre at R and radius 3cm.
- **v.** Draw an arc with centre at P and radius 3cm which intersects the previous arc at S.
- vi. Join Q with R, R with S and P with S.

Hence, *PQRS* is the required rhombus.

8.1.6 Construct a parallelogram

(a) When two diagonals and the angle between them is given.

Example 8:

Construct a parallelogram ABCD whose diagonals are 3cm and 5cm and the angle between them is 75° .

Solution:

Steps of construction:

- i. Draw the diagonal $m\overline{AC} = 3cm$.
- **ii.** Bisect \overline{AC} with O as the midpoint.
- iii. Construct an angle 75° at the point O and extend the line on both sides.
- iv. From O, draw an arc of radius 2.5cm on both sides of \overline{AC} to cut the above line at B and D.
- **v.** Join A with B and D.
- **vi.** Join C with B and D.

Hence, ABCD is the required parallelogram.

(b) When two adjacent sides and the angle included between them are given

Example 9:

Construct a parallelogram PQRS when $m\overline{PQ} = 4cm$, $m\overline{PS} = 7cm$ and included angle between these sides is $m\angle QPS = 60^{\circ}$.

Solution:

Steps of construction:

- i. Draw a line segment PQ = 4cm.
- ii. Construct $m \angle QPX = 60^{\circ}$ at point P.
- iii. Draw an arc with centre at P and radius 7cm which intersects \overrightarrow{PX} at point S.
- iv. Draw an arc with centre at Q and radius 7cm above point Q.

- **v.** Draw an arc with centre at S and radius 4cm which intersects the arc drawn from point Q at R.
- **vi.** Join R with S and Q to R to form the required parallelogram PQRS.

8.1.7 Construct a kite when two unequal sides and a diagonal are given

Example 10:

Construct a kite PQRS when $m\overline{PQ}=4cm$, $m\overline{QR}=6cm$ and the length of the longer diagonal is $m\overline{PR}=8cm$.

Solution:

- i. Draw $m\overline{PQ} = 4cm$.
- ii. Draw an arc with centre at Q and radius 6cm.

iii. Draw an arc with centre at P and radius 8cm. It intersects the previous arc at point R.

- iv. Draw an arc with centre P and radius 4cm above P.
- v. Draw an arc with centre at R and radius 6cm which intersects the arc drawn from P at S.
- **vi.** Join R with Q and S and P with S.

Hence, PQRS is the required kite

8.1.8 Construct a regular pentagon when a side is given

Example 11: Construct a regular pentagon PQRST when $m\overline{PQ} = 4cm$ **Solution:**

Steps of construction:

- i. Draw $m\overline{PQ} = 4cm$.
- ii. Construct $m \angle P = m \angle Q = 108^{\circ}$.

[NOTE: Each interior angle of a regular pentagon is equal to 108°.]

- iii. Draw an arc with centre at P and radius 4cm which intersects \overrightarrow{PX} at T.
- iv. Draw an arc with centre at Q and radius 4cm which intersects \overrightarrow{QY} at R.
- **v.** Draw an arc with centre at R and radius 4cm.
- vi. Draw an arc with centre at *T* and radius 4*cm*.It intersects the arc drawn from point *R* at the point *S*.
- **vii.** Join R with S and T with S.

Hence, $\it PQRST$ is the required regular pentagon.

8.1.9 Construct a regular hexagon when a side is given

Example 12:

Construct a regular hexagon ABCDEF when $m\overline{AB} = 3cm$

Solution:

Steps of construction:

i. Draw a circle of radius 3cm with centre at O.

- ii. Take a point A on the circle, draw an arc on the circle with centre A and radius 3cm. Label it as B.
- iii. Take B as the centre and radius 3cm draw an arc on the circle, mark it as C.
- iv. Take C as the centre and radius 3cm draw an arc on the circle, mark it as D.
- **v.** Take D as the centre and radius 3cm draw an arc on the circle, mark it as E.
- **vi.** Take E as the centre and radius 3cm draw an arc on the circle, mark it as F.
- **vii.** Join B with C, C with D, D with E, E with F and F with A.

Hence, *ABCDEF* is the required regular hexagon.

Note: Each interior angle of a rectangular hexagon is equal to 120°

EXERCISE 8.1

- 1. Construct a square ABCD when a diagonal $m\overline{AC} = 4.5cm$.
- **2.** Construct a square PQRS when its diagonal is 4cm more than its side.
- **3.** Construct a square PQRS, when the sum of the diagonal and a side of the square is 8cm.
- **4.** Construct a rectangle *ABCD* when $m\overline{AB} = 4cm$ and $m\overline{BC} = 6cm$.
- **5.** Construct a rectangle ABCD, when the $m\overline{AB} = 5.5 cm$ and $m\overline{AC} = 8 cm$
- **6.** Construct a rhombus *KLMN*, when the $m\overline{KL} = 5cm$, $m \angle K = 75^{\circ}$
- 7. Construct a rhombus STUV, when $m\overline{ST} = 6cm$ and $m\overline{SU} = 9cm$
- **8.** Construct a parallelogram ABCD with diagonals 6cm and 8cm and the angle between them 70° .
- **9.** Construct a parallelogram DEFG where $m\overline{DE} = 5.5cm$, $m\overline{EF} = 6.5cm$ and $m\angle E = 60^{\circ}$.
- **10.** Construct a kite DEFG where $m\overline{DE} = 4cm$, $m\overline{EF} = 8cm$ and the length of the longer diagonal is $m\overline{DF} = 10cm$.
- **11.** Construct a regular pentagon *ABCDE*, where $m\overline{AB} = 3.2cm$.
- **12.** Construct a regular hexagon STUVWX, where $m\overline{ST} = 3cm$.

8.2 Construction of a Right angled triangle

(a) Construct a right angled triangle when hypotenuse and one side are given

Example 1:Construct a right angled triangle ABC, when $m\overline{AB} = 5cm$, $m\overline{AC} = 7cm$ and $m\angle B = 90^{\circ}$

Solution

Steps of construction:

- i. Draw $m\overline{AB} = 5cm$.
- ii. Construct $m \angle B = 90^{\circ}$. Draw \overrightarrow{BX}
- iii. Take A as the centre and radius 7cm. Draw an arc on intersecting \overrightarrow{BX} at C.
- iv. Join A with C.

Hence, ABC is the required right angled triangle.

(b) Construct a right angled triangle when hypotenuse and the vertical height from its vertex to the hypotenuse are given

Example 2:

Construct a right angled triangle ABC, when hypotenuse $m\overline{BC} = 9cm$ and perpendicular from vertex A to \overline{BC} is 4cm.

Solution:

- i. Draw $m\overline{BC} = 9cm$.
- ii. Bisect the \overline{BC} at point O with the help of compass.
- iii. Draw a semi circle taking point *O* as centre.
- iv. Draw two arcs of radius 4cm taking points B and C as centre above \overline{BC} .
- **v.** Draw \overrightarrow{XY} touching the two arcs which intersects the semi circle at points A and A'.
- vi. Join A with B and C. $\triangle ABC$ is the required right angled triangle at angle A.

PRACTICAL GEOMETRY UNIT - 8

	EXERCISE 8.2
1.	Construct following right angled triangles when:
	a. Hypotenuse = $8.5cm$ and length of a side is $6cm$.
	b. Hypotenuse = $6cm$ and length of a side is $3cm$.
	c. Hypotenuse = $5cm$ and length of a side is $2.5cm$.
2.	Construct a right angled triangle ABC, when $m\overline{AB} = 4.5cm$, $m\overline{BC} = 5.5cm$
	and $m\angle B = 90^{\circ}$.
3.	Construct a right angled triangle PQR , when $m\overline{QR} = 8cm$, $m\overline{PQ} = 5cm$
	and $m\angle Q = 90^{\circ}$.
4.	Construct a right angled triangle LMN , when hypotenuse $\overline{MN} = 8$ cm
	and perpendicular from vertex L to \overline{MN} is 3.5cm.
	REVIEW EXERCISE 8
_	
1. :	Four options are given against each statement. Encircle the correct one.
i.	A polygon with sum of measure of interior angles equal to 360° is called:
	(a) triangle (b) quadrilateral (c) pentagon (d) hexagon
ii.	In a square, the diagonals:
	(a) bisect each other (b) do not intersect
	(c) are of unequal lengths (d) do not bisect each other
iii.	In regular pentagon, the measure of an interior angle is:
	(a) 100° (b) 108° (c) 116° (d) 124°
iv.	
IV.	In a rectangle, the diagonals: (a) bisect each other (b) are perpendicular to each
.,	
V.	In a rhombus, the diagonals: (a) bisect the vertex angle (b) are of equal length.
	(a) bisect the vertex angle (b) are of equal length
:	(b) are not perpendicular to each other (d) all of the above
vi.	Square is a: (b) guadrilatoral
	(a) pentagon (b) quadrilateral
	(c) triangle (d) none of the above
vii.	The measure of one interior angle of a regular hexagon is:
	(a) 108° (b) 120° (c) 140° (d) 170°
viii.	If the measure of three angles of a quadrilateral are 108°, 128° and 76°,
	then measure of its fourth angle is:
	(a) 48° (b) 88° (c) 98° (d) 108°
	TTO TO THE PARTY OF THE PARTY O

- **2.** Construct the following:
- i. Square *PQRS* such that $m\overline{RS} = 4cm$.
- ii. Square *ABCD* such that $m\overline{AC} = 3.5cm$.
- iii. Square WXYZ, when the difference of its diagonal and side is 5cm.
- iv. Square *PQRS*, when the sum of its diagonal and side is 8*cm*.
- **v.** Rectangle *ABCD* in which $m\overline{AB} = 5.5cm$ and $m\overline{BC} = 8cm$.
- vi. Rectangle *LMNO*, when $m\overline{LM} = 4cm$ and $m\overline{LN} = 6cm$
- vii. Rhombus PQRS, when $m\overline{PQ} = 5.5cm$ and $m\angle P = 75^{\circ}$.
- viii. Parallelogram ABCD whose diagonals are 5cm and 9cm and the included angle is 80° .
- ix. Parallelogram UVWX with sides $m\overline{UV} = 8cm$, $m\overline{UX} = 5cm$ and $m\angle U = 60^{\circ}$.
- **x.** Kite ABCD with $m\overline{AB} = 4cm$, $m\overline{BC} = 6cm$ and the length of the longer diagonal is $m\overline{AC} = 7cm$.
- **xi.** Regular pentagon *GHIJK*, when $m\overline{GH} = 4cm$.

SUMMARY

- Quadrilateral is a 4-sided polygon which has the sum of interior angles equal to 360° .
- Coverging lines are non-parallel lines and these lines meet at a single point.
- Diagonals of a rectangle, a square, a parallelogram and a rhombus bisect each other.
- Diagonals of a square and a rhombus bisect each other at 90°.
- Diagonals of a square and a rectangle are of equal lengths.
- In a regular hexagon, the sum of measures of interior angles is 720° and the measure of each interior angle is 120°.
- In a regular pentagon, the sum of measures of interior angles is 540° and the measure of each interior angle is 108° .