version: 1.1

CHAPTER

PARALLELOGRAMS AND TRIANGLES

Animation 11.1: Triangle to Square Source & Credit: takayaiwamoto

Students Learning Outcomes

After studying this unit, the students will be able to:

- prove that in a parallelogram
 - the opposite sides are congruent,
 - the opposite angles are congruent,
 - the diagonals bisect each other.
- prove that if two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.
- prove that the line segment, joining the midpoints of two sides of a triangle, is parallel to the third side and is equal to one half of its length.
- prove that the medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.
- prove that if three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.

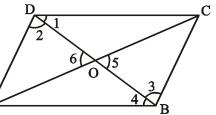
Introduction

Before proceeding to prove the theorems in this unit the students are advised to recall definitions of polygons like parallelogram, rectangle, square, rhombus, trapezium etc. and in particular triangles and their congruency.

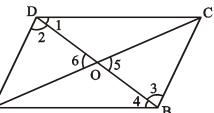
Theorem 11.1.1

In a parallelogram

- **Opposite sides are congruent.** (i)
- **Opposite angles are congruent.** (ii)
- (iii) The diagonals bisect each other.



Given



In a quadrilateral ABCD, $\overline{AB} \parallel \overline{DC}$, $\overline{BC} \parallel \overline{AD}$ and the diagonals \overline{AC} , \overline{BD} meet each other at point O.

To Prove

(i)	$\overline{AB}\cong\overline{DC},\overline{AD}\cong\overline{B0}$
(ii)	$\angle ADC \cong \angle ABC, \angle$
(iii)	$\overline{OA} \cong \overline{OC}, \overline{OB} \cong \overline{OC}$

Construction

 $\angle 5$, and $\angle 6$

Proof Statements In $\triangle ABD \leftrightarrow \triangle CDB$ $\angle 4 \cong \angle 1$ $\mathsf{BD}\cong\mathsf{BD}$ $\angle 2 \cong \angle 3$ $\therefore \Delta \mathsf{ABD} \cong \Delta \mathsf{CDB}$ So, $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$ and $\angle A \cong \angle C$ (ii) Since $\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$ $\therefore m \angle 1 + m \angle 2 = m \angle 4 + m \angle 4 + m \angle 4 = m \angle 4 + m \angle 4 + m \angle 4 = m \angle 4 + m \\ = m \angle 4 + m \\ = m \angle 4 + m \\ = m \angle 4 + m \angle 4 + m \angle 4 + m \angle 4 + m \\ m (2 + m) + m \angle 4 + m \angle 4 + m \\ m (2 + m) + m (2 + m) + m (2 + m) + m) = m (2 + m) + m (2 + m) + m) = m (2 + m) + m (2 + m) + m) = m (2 + m) + m (2 + m) + m (2 + m) + m) = m (2 + m) + m (2 + m) + m) = m (2 + m) = m (2 + m) + m (2 + m) = m (2 + m) + m) =$ or $m \angle ADC \cong m \angle ABC$ $\angle ADC \cong \angle ABC$ and $\angle BAD \cong \angle BCD$ (iii) In $\triangle BOC \longleftrightarrow \triangle DC$ $\overline{\mathsf{BC}}\cong\overline{\mathsf{AD}}$ $\angle 5 \cong \angle 6$ $\angle 3 \cong \angle 2$ $\therefore \quad \Delta BOC \cong \Delta DOA$ Hence $\overline{OC} \cong \overline{OA}$, \overline{OB}

C $\angle BAD \cong \angle BCD$ DC

In the figure as shown, we label the angles as $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$,

	Reasons
Ċ	alternate angles Common alternate angles A.S.A. ≅ A.S.A. (corresponding sides of congruent triangles) (corresponding angles of congruent triangles)
	Proved Proved from (a) and (b) Proved in (i)
OA	Proved in (i) vertical angles Proved
≅OD	(A.A.S. \cong A. A. S.) (corresponding sides of congruent triangles)

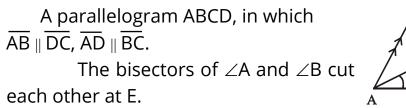
3

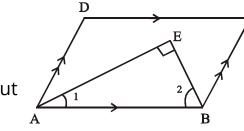
Each diagonal of a parallelogram bisects it into two congruent triangles.

Example

The bisectors of two angles on the same side of a parallelogram cut each other at right angles.

Given





To Prove

m∠E = 90°

Construction

Name the angles $\angle 1$ and $\angle 2$ as shown in the figure.

Proof

Statements	Reasons
$m \angle 1 + m \angle 2$ = $\frac{1}{2}$ (m \angle BAD + m \angle ABC) = $\frac{1}{2}$ (180°) =90°	$\begin{cases} m \angle 1 = m \frac{1}{2} \angle BAD, \\ m \angle 2 = m \frac{1}{2} \angle ABC \\ \end{cases}$ Int. angles on the same side of \overline{AB} which cuts \parallel segments \overline{AD} and \overline{BC} are supplementary.
Hence in $\triangle ABE$, m $\angle E = 90^{\circ}$	m∠1 + m∠2 = 90º (Proved)

- remaining angles.

Theorem 11.1.2 quadrilateral are congruent and parallel, it is a parallelogram.

Given

In a quadrilateral ABCD, $AB \cong DC and ABDC$

To Prove

ABCD is a parallelogram.

Construction

 $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$

Proof

Statemen	ts	Reasons
In $\triangle ABD \longleftrightarrow \triangle CD$	В	
$\overline{AB}\cong\overline{DC},$		given
$\angle 2 \cong \angle 1$		alternate angles
$\overline{BD}\cong\overline{BD}$		Common
$\therefore \Delta ABD \cong \Delta CDB$		S.A.S. postulate
Now $\angle 4 \cong \angle 3$	(i)	(corresponding angles of
		congruent triangles)
\therefore AD BC	(ii)	from (i)
and $\overline{AD} = \overline{BC}$	(iii)	correspondingsidesofcongruent
		∆s

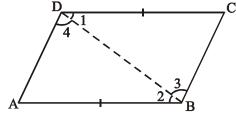
5

EXERCISE 11.1

1. One angle of a parallelogram is 130°. Find the measures of its

2. One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

If two opposite sides of a



Join the point B to D and in the figure, name the angles as indicated:

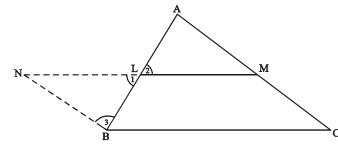
Also $\overline{AB} \parallel \overline{DC}$ (iv)	given
Hence ABCD is a parallelogram	from (ii) – (iv)

EXERCISE 11.2

- 1. Prove that a quadrilateral is a parallelogram if its (a) opposite angles are congruent. (b) diagonals bisect each other.
- 2. Prove that a quadrilateral is a parallelogram if its opposite sides are congruent.

Theorem 11.1.3

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half of its length.



Given

In $\triangle ABC$, The mid-points of \overline{AB} and \overline{AC} are L and M respectively.

To Prove $\overline{LM} \parallel \overline{BC} \text{ and } mLM = \frac{1}{2} mBC$

Construction

Join M to L and produce \overline{ML} to N such that $\overline{ML} \cong \overline{LN}$. Join N to B and in the figure, name the angles as $\angle 1, \angle 2$ and $\angle 3$ as shown.

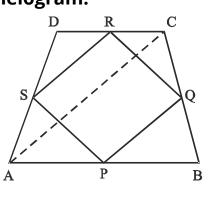
Statements		Reasons	
In $\triangle BLN \longleftrightarrow \triangle ALM$			
$\overline{BL}\cong\overline{AL}$		Given	
$\angle 1 \cong \angle 2$		vertical angles	
$\overline{NL}\cong\overline{ML}$		Construction	
$\therefore \qquad \Delta BLN\cong \Delta ALM$		S.A.S. postulate	
$\therefore \qquad \angle A \cong \angle 3$	(i)	(corresponding angles of congruent	
		triangles)	
and $NB \cong AM$	(ii)	(corresponding sides of congruent	
		triangles)	
But NB AM		From (i), alternate ∠s	
Thus NB MC	(iii)	(M is a point of \overline{AC})	
$\overline{MC}\cong\overline{AM}$	(iv)	Given	
NB ≅ MC		{from (ii) and (iv)}	
∴ BCMN is a parallelogram		from (iii) and (v)	
\therefore BC \overline{LM} or BC NL		(opposite sides of a parallelogram	
		BCMN)	
$\overline{BC}\cong\overline{NM}$	(vi)	(opposite sides of a parallelogram)	
$mLM = m\frac{1}{2}MM$	(vii)	Construction	
Hence m $\overline{LM} = \frac{1}{2}m\overline{BC}$		{from (vi) and (vii)}	

Note that instead of producing \overline{ML} to N, we can take N on \overline{LM} produced.

Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram. Given С

A quadrilateral ABCD, in which P is the mid-point of \overline{AB} , Q is the mid-point of \overline{BC} , R is the mid-point of \overline{CD} , S is the mid-point of DA. P is joined to Q, Q is joined to R. R is joined to S and S is joined to P.



Given

 $\triangle ABC$

To Prove

The medians of the $\triangle ABC$ are concurrent and the point of concurrency is the point of trisection of each median.

Construction

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ which intersect each other at G. Join A to G and produce it to point H such that AG $\cong \overline{GH}$. Join H to the points B and C. \overline{AH} intersects \overline{BC} at the point D.

Statements	Reasons
In $\triangle ACH$,	
	G and E are mid-points of sides
	AH and AC respectively
or $\overline{BE} \parallel \overline{HC}$	(i) G is a point of BE
Similarly, CF HB	(ii)
∴ BHCG is a parallelogram	from (i) and (ii)
and mGD = mGH	(iii) (diagonals BC and GH of a parallelogram BHCG intersect each other at point D)
$\overline{BD}\cong\overline{CD}$	
\overline{AD} is a meadian of $\triangle AB$	
Meadians \overline{AD} , \overline{BE} and \overline{CF}	pass G is the intersecting point of BE
through the point G	and \overline{CF} and \overline{AD} pass through it.)
Now $\overline{GH} \cong \overline{AG}$	(iv) construction

To Prove

PQRS is a parallelogram.

Construction

Join A to C.

Proof

Statements	Reasons
$\left[\begin{array}{c} \text{In} \Delta DAC, \\ \overline{SR} \parallel \overline{AC} \\ m\overline{SR} = m\frac{1}{2}\overline{AC} \end{array}\right]$	S is the midpoint of DA R is the midpoint of CD
In $\triangle BAC$, $\overrightarrow{PQ} \parallel \overrightarrow{AC}$ $m\overrightarrow{PQ} = m\frac{1}{2}\overrightarrow{AC}$	P is the midpoint of \overline{AB} Q is the mid-point of \overline{BC}
SR II PQ	Each ll AC
mSR = mPQ	Each = $m\frac{1}{2}\overline{AC}$
ThusPQRSisaparallelogram	SR ll PQ, mSR = mPQ (proved)

EXERCISE 11.3

- 1. Prove that the line-segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
- 2. Prove that the line-segments joining the midpoints of the opposite sides of a rectangle are the right-bisectors of each other. [Hint: Diagonals of a rectangle are congruent.]
- 3. Prove that the line-segment passing through the midpoint of one side and parallel to another side of a triangle also bisects the third side.

Theorem 11.1.4

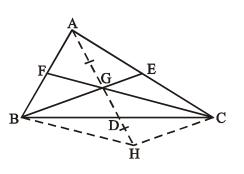
The medians of a triangle are concurrent and their point of

Version: 1.1

8

Version: 1.1

concurrency is the point of trisection of each median.



eLearn.Punjab

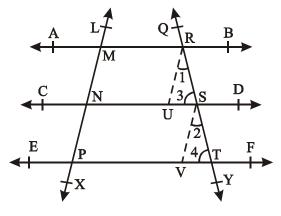
	from (iii) and (iv)
\therefore mGD = $\frac{1}{2}$ mAG	
$\therefore \qquad \text{mGD} = \frac{1}{2} \text{mAG}$ and G is the point of trisection of AD	
(v)	
Similarly it can be proved that G	
is also the point of trisection of \overline{CF}	
and BE	

EXERCISE 11.4

- 1. The distances of the points of concurrency of the median of a triangle from its vertices are respectively 1.2 cm, 1.4 cm and 1.6 cm. Find the lengths of its medians.
- 2. Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-point of its sides is the same.

Theorem 11.1.5

If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.



Given

ÂB || CD || EF

The transversal LX intersects AB, CD and EF at the points M, N and P respectively, such that $\overline{MN} \cong \overline{NP}$. The transversal \overleftrightarrow{QY} intersects them at points R, S and T respectively.

10

Construction as

Droof

Proof	
	Statements
MNUR	is a parallelogra
	$\overline{MN}\cong\overline{RU}$
Similarl	у,
	$\overline{NP}\cong\overline{SV}$
But	$\overline{MN} \cong \overline{NP}$
<i>:</i>	$\overline{RU}\cong\overline{SV}$
Also	RU II SV
<i>∴</i>	$\angle 1 \cong \angle 2$
and	$\angle 3 \cong \angle 4$
ln Δ	$RUS \longleftrightarrow \DeltaSVT,$
	$\overline{RU}\cong\overline{SV}$
	$\angle 1 \cong \angle 2$
	$\angle 3 \cong \angle 4$
	$RUS \cong \Delta SVT$
Hence	RS ≅ ST

Note: This theorem helps us in dividing line segment into parts of equal lengths. It is also used in the division of a line segment into proportional parts.

Corollaries

(i) A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U. From S, draw $\overline{SV} \parallel \overline{LX}$ which meets EF at V. As shown in the figure let the angles be labelled

 $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$

		Reasons		
m		RU II LX (construction)		
		AB CD (given)		
	(i)	(opposite sides of a parallelogram)		
	(ii)			
	(iii)	Given		
		{from (i), (ii) and (iii)}		
		each II \overrightarrow{LX} (construction)		
		Corresponding angles		
		Corresponding angles		
		Proved		
		Proved		
		Proved		
		$S.A.A. \cong S.A.A.$		
		(corresponding sides of congruent		
		triangles)		

M −⊢►

Α

11. Parallelograms and Triangles

it into five congruent parts. $\overline{AP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong ST.$ points P, Q, R and S.]

- 1. Fill in the blanks.

 - - point.
- 2. In parallelogram ABCD
- 3.
- If the given figure ABCD is a 4. parallelogram, then find *x*, *m*.

Given

In $\triangle ABC$, D is the mid-point of \overline{AB} . $\overline{\text{DE}} \parallel \overline{\text{BC}}$ which cuts $\overline{\text{AC}}$ at E.

To Prove

 $\overline{AE} \cong \overline{EC}$

Construction

Through A, draw $\overrightarrow{LM} \parallel \overrightarrow{BC}$.

Proof

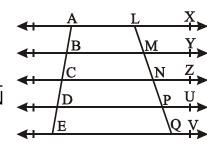
Statements	Reasons
Intercepts cut by \overrightarrow{LM} , \overrightarrow{DE} , \overrightarrow{BC} on	
AC are congruent.	\int BC on \overline{AB} are congruent (given)
i.e., $\overline{AE} \cong \overline{EC}$.	

- (ii) The parallel line from the mid-point of one non-parallel side of a trapezium to the parallel sides bisects the other non-parallel side.
- (iii) If one side of a triangle is divided into congruent segments, the line drawn from the point of division parallel to the other side will make congruent segments on third side.

EXERCISE 11.5

12

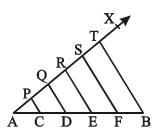
1. In the given figure ĂX || BY || CZ || DU || EV and $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DE}$ If $\overline{\text{MN}}$ = 1cm, then find the length of $\overline{\text{LN}}$ and \overline{LQ} .



2. Take a line segment of length 5.5 cm and divide

[Hint: Draw an acute angle \angle BAX on \overrightarrow{AX} take

Join T to B. Draw lines parallel to \overline{TB} from the

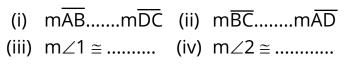


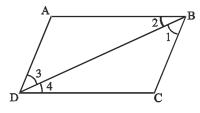
REVIEW EXERCISE 11

(i) In a parallelogram opposite sides are (ii) In a parallelogram opposite angles are (iii) Diagonals of a parallelogram each other at a

(iv) Medians of a triangle are

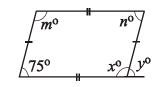
(v) Diagonal of a parallelogram divides the parallelogram into two triangles

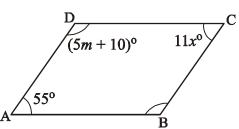




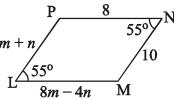
Find the unknowns in the given figure.

13





5. The given figure LMNP is a parallelogram. 4m + nFind the value of *m*, *n*.



6. In the question 5, sum of the opposite angles of the parallelogram is 110°, find the remaining angles.

SUMMARY

In this unit we discussed the following theorems and used them to solve some exercises. They are supplemented by unsolved exercises to enhance applicative skills of the students.

- In a parallelogram
 - (i) Opposite sides are congruent.
 - (ii) Opposite angles are congruent.
 - (iii) The diagonals bisect each other.
- If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.
- The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half of its length.
- The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.
- If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.