version: 1.1

## CHAPTER



# SIDES AND ANGLES OF A TRIANGLE

Animation 13.1: Sides and Angles of a Triangle Source & Credit: eLearn.punjab

|                                                             | Statements                                                                       | Reasons                                                                  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ents will be able to:                                       | In ΔABD                                                                          |                                                                          |
| e are unequal in length, the longer<br>sure opposite to it. | m∠1 = m∠2 (i)                                                                    | Angles opposite to congruent sides<br>(construction)                     |
| ngle are unequal in measure, the                            | ln ∆BCD, m∠ACB < m∠2                                                             |                                                                          |
| le is longer than the side opposite                         | i.e. m∠2 > m∠ACB (ii)                                                            | (An exterior angle of a triangle is greater than a non-adjacent interior |
| ns of any two sides of a triangle is                        |                                                                                  | angle)                                                                   |
| ird side.                                                   | ∴ m∠1 > m∠ACB (III)                                                              | By (I) and (II)                                                          |
| -side a line, the perpendicular                             | But                                                                              |                                                                          |
| om the point on the line.                                   | $m \angle ABC = m \angle 1 + m \angle DBC$<br>∴ $m \angle ABC > m \angle 1$ (iv) | Postulate of addition of angles.                                         |
|                                                             | ∴ m∠ABC > m∠1 >m∠ACB                                                             | By (iii) and (iv)                                                        |
| triangle are equal, then the angles                         | Hence m∠ABC > m∠ACB                                                              | (Transitive property of inequality of real numbers)                      |
| rality relations among sides and                            |                                                                                  |                                                                          |
| anty relations among sides and                              | Example 1                                                                        |                                                                          |
|                                                             | Prove that in a scalene                                                          | triangle, the angle opposite to th                                       |
|                                                             | largest side is of measure gr                                                    | ester than 60° (i.e. two third of                                        |
|                                                             | right angle)                                                                     |                                                                          |
| re unequal in length, the longer<br>sure opposite to it.    | ngnt-angle)                                                                      |                                                                          |
|                                                             | Given                                                                            | A                                                                        |

#### **To Prove**

m∠B > 60°.

| Proof                                                                  |                                                                        |
|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Statements                                                             | Reasons                                                                |
| In ∆ABC                                                                |                                                                        |
| m∠B > m∠C                                                              | mAC > mAB (given)                                                      |
| m∠B > m∠A                                                              | $\overline{mAC} > \overline{mBC}$ (given)                              |
| But $m \angle A + m \angle B + m \angle C = 180^{\circ}$               | $\angle A$ , $\angle B$ , $\angle C$ are the angles of $\triangle$ ABC |
| $\therefore \qquad m \angle B + m \angle B + m \angle B > 180^{\circ}$ | $m \angle B > m \angle C$ , $m \angle B > m \angle A$ (proved)         |
| Hence m∠B > 60°                                                        | 180°/3 = 60°                                                           |
| Hence m∠B > 60°                                                        | 180°/3 = 60°                                                           |

|         | -       |       |        |    |
|---------|---------|-------|--------|----|
| Student | s Learn | ing O | Jutcom | es |

#### After studying this unit, the stud

- prove that if two sides of a triangl side has an angle of greater mea
- prove that if two angles of a tria side opposite to the greater angl to the smaller angle.
- prove that the sum of the length greater than the length of the th
- prove that from a point, out is the shortest distance fr

#### Introduction

Recall that if two sides of a apposite to them are also equal a shall study some interesting inequ angles of a triangle.

#### Theorem 13.1.1

If two sides of a triangle a side has an angle of greater meas

#### Given

In  $\triangle ABC$ , mAC > mAB

#### **To Prove**

m∠ABC > m∠ACB



#### Construction

On  $\overline{AC}$  take a point D such that  $\overline{AD} \cong \overline{AB}$ . Join B to D so that  $\triangle ADB$ is an isosceles triangle. Label  $\angle 1$  and  $\angle 2$  as shown in the given figure.



#### **Example 2**

In a quadrilateral ABCD,  $\overline{AB}$  is the longest side and  $\overline{CD}$  is the shortest side. Prove that  $m \angle BCD > m \angle BAD$ .

#### Given

In quad. ABCD,  $\overline{AB}$  is the longest side and CD is the shortest side.

#### To Prove

 $m \angle BCD > m \angle BAD$ 



#### Construction

Joint A to C. Name the angles  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$  and  $\angle 4$  as shown in the figure.

#### Proof

| Statements                                                             | Reasons                                                  |
|------------------------------------------------------------------------|----------------------------------------------------------|
| In ∆ABC, m∠4 >∠2 I                                                     | mAB > mBC (given)                                        |
| In ∆ACD, m∠3 > m∠1 II                                                  | mAD > mCD (given)                                        |
| $\therefore$ m $\angle$ 4 + m $\angle$ 3 > m $\angle$ 2 + m $\angle$ 1 | From I and II                                            |
| Hence m∠BCD > m∠BAD                                                    | $\therefore \int m \angle 4 + m \angle 3 = m \angle BCD$ |
|                                                                        | lm∠2 + m∠1 = m∠BAD                                       |

#### Theorem 13.1.2

(Converse of Theorem 13.1.1)

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

#### Given

To Prove

In  $\triangle ABC$ , m $\angle A > m \angle B$ 

 $\overline{mBC} > \overline{mAC}$ 



#### Proof

Statements If,  $\overline{mBC} \ge \overline{mAC}$ , then either (i)  $\overline{mBC} = \overline{mAC}$ or (ii)  $m\overline{BC} < m\overline{AC}$ From (i) if  $\overline{\text{mBC}} = \overline{\text{mAC}}$ ,  $m \angle A = m \angle B$ 

which is not possible. From (ii) if mBC < mAC, m∠A < m∠B

This is also not possible m<del>BC</del> ≠ m<del>AC</del> *.*.. and mBC ≮ mAC Thus m $\overline{BC}$  > m $\overline{AC}$ 

#### Corollaries

- (i)
  - the other two sides.
- (ii)

#### Example

ABC is an isosceles triangle with base  $\overrightarrow{BC}$ . On  $\overrightarrow{BC}$  a point D is taken away from C. A line segment through D cuts  $\overline{AC}$  at L and  $\overline{AB}$ at M. Prove that  $m\overline{AL} > m\overline{AM}$ .

#### Given

In  $\triangle ABC$ ,  $\overline{AB} \cong \overline{AC}$ D is a point on  $\overrightarrow{BC}$  away from C. A line segment through D cuts  $\overline{AC}$ at L and  $\overline{AB}$  at M.

Version: 1.1

|      | Reasons                                                                            |
|------|------------------------------------------------------------------------------------|
|      | (Trichotomy property of real numbers)                                              |
| then |                                                                                    |
|      | (Angles opposite to congruent sides are congruent)                                 |
|      | Contrary to the given.                                                             |
| then |                                                                                    |
|      | (The angle opposite to longer side is greater than angle opposite to smaller side) |
| e.   | Contrary to the given.                                                             |
|      |                                                                                    |
|      | Trichotomy property of real numbers.                                               |

The hypotenuse of a right angled triangle is longer than each of

In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two sides.



mAL > mAM

#### Proof

| Statements                               | Reasons                                             |
|------------------------------------------|-----------------------------------------------------|
| In 🛆 ABC                                 |                                                     |
| $\angle B \cong \angle 2$ I              | $\overline{AB} \cong \overline{AC}$ (given)         |
| In ∆MBD                                  |                                                     |
| m∠1 > m∠BII                              | (∠1 is an ext. ∠ and ∠B is its internal opposite ∠) |
| $\therefore m \angle 1 > m \angle 2$ III | From I and II                                       |
| In ∆LCD,                                 |                                                     |
| m∠2 > m∠3IV                              | (∠2 is an ext. ∠ and ∠3 is its internal opposite ∠) |
| ∴ m∠1 > m∠3V                             | From III and IV                                     |
| But ∠3 ≅ ∠4VI                            | Vertical angles                                     |
| .∴ m∠1 > m∠4                             | From V and VI                                       |
| Hence $\overline{MAL} > \overline{MAM}$  | In ∆ALM, m∠1 > m∠4 (proved)                         |

#### **Theorem 13.1.3**

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

#### Given

 $\Delta ABC$ 

#### **To Prove**

(i)  $m\overline{AB} + m\overline{AC} > m\overline{BC}$ (ii)  $m\overline{AB} + m\overline{BC} > m\overline{AC}$ (iii) mBC + mCA > mAB



#### Construction

Take a point D on  $\overrightarrow{CA}$  such that  $\overrightarrow{AD} \cong \overrightarrow{AB}$ . Join B to D and name the angles.  $\angle 1$ ,  $\angle 2$  as shown in the given figure.



**Example 1** 

#### Which of the following sets of lengths can be the lengths of the sides of a triangle? (a) 2 cm, 3 cm, 5 cm (b) 3 cm, 4 cm, 5 cm, (c) 2 cm, 4 cm, 7 cm,

- (a) ∵ 2 + 3 = 5 (b)  $\therefore$  3+4>5, 3+5>4, 4+5>3
  - :. This set can form a triangle
- (c) ∴ 2+4<7

#### **Example 2**

third side.

#### Given

In ∆ABC, median  $\overline{AD}$  bisects side  $\overline{BC}$  at D.

| ts                   | Reasons                                                                                                               |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| (i)<br>(ii)<br>(iii) | $\overline{AD} \cong \overline{AB}$ (construction)<br>m $\angle DBC = m \angle 1 + m \angle ABC$<br>From (i) and (ii) |
| BC<br>mBC            | By (iii)<br>mCD = mAD + mAC<br>mAD = mAB (construction)                                                               |
| mĀC                  |                                                                                                                       |
| mĀB                  |                                                                                                                       |

```
:. This set of lengths cannot be those of the sides of a triangle.
```

... This set of lengths cannot be the sides of a triangle.

#### Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the



#### **Proof:**

```
Statements
          m\overline{AB} + m\overline{BC} > m
          (m\overline{AB} + m\overline{BC} - m)
           >(m\overline{AC} - m\overline{AB})
           m\overline{BC}>(m\overline{AC} - m/
 · .
           mAC - mAB < m
or
Similarly
         m\overline{BC} - m\overline{AB} < m\overline{A}
         \overline{mBC} - \overline{mAC} < \overline{mAC}
```

- 2. O is an interior point of the  $\triangle$ ABC. Show that  $m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2}(m\overline{AB} + m\overline{BC} + m\overline{CA})$
- each of the other two sides.
- 5. In the triangular figure,  $\overline{\text{mAB}} > \overline{\text{mAC}}$ .  $\overline{\text{BD}}$ and  $\overline{CD}$  are the bisectors of B and C respectively. Prove that mBD > mDC.

## **Theorem 13.1.4**

distance from the point to the line.

#### Given

A line AB and a point C (not lying on  $\overrightarrow{AB}$ ) and a point D on  $\overrightarrow{AB}$  such that CD  $\perp \overrightarrow{AB}$ .

#### **To Prove**

 $m\overline{AB} + m\overline{AC} > 2m\overline{AD}$ .

#### Construction

On  $\overrightarrow{AD}$  take a point E, such that  $\overrightarrow{DE} \cong \overrightarrow{AD}$ . Join C to E. Name the angles  $\angle 1$ ,  $\angle 2$  as shown in the figure.

#### Proof

| Statements                                            | Reasons                                           |
|-------------------------------------------------------|---------------------------------------------------|
| In $\triangle ABD \longleftrightarrow \triangle ECD$  |                                                   |
| $\overline{BD}\cong\overline{CD}$                     | Given                                             |
| $\angle 1 \cong \angle 2$                             | Vertical angles                                   |
| $\overline{AD}\cong\overline{ED}$                     | Construction                                      |
| $\triangle ABD \cong \triangle ECD$                   | S.A.S. Postulate                                  |
| $\overline{AB} \cong \overline{EC}$ I                 | Corresponding sides of $\cong \Delta s$           |
| $\overline{mAC} + \overline{mEC} > \overline{mAE}$ II | ACE is a triangle                                 |
| $m\overline{AC} + m\overline{AB} > m\overline{AE}$    | From I and II                                     |
| Hence $\overline{MAC}$ + $\overline{MAB}$ > 2mAD      | $\overline{MAE} = 2\overline{MAD}$ (construction) |

#### Example 3

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side.

#### Given

∆ABC

#### **To Prove**

 $m\overline{AC} - m\overline{AB} < m\overline{BC}$  $\overline{mBC} - \overline{mAB} < \overline{mAC}$  $m\overline{BC} - m\overline{AC} > m\overline{AB}$ 



| 5            | Reasons                         |
|--------------|---------------------------------|
| ĀĊ           | ABC is a triangle               |
| חAB)         | Subtracting mAB from both sides |
| AB)<br>1BC I | $a > b \Rightarrow b < a$       |
| AC<br>AB     | Reason similar to I             |

#### **EXERCISE 13.1**

1. Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side?

(a) 5 cm (b) 20 cm (c) 25 cm (d) 30 cm

3. In the  $\triangle$  ABC, m $\angle$ B = 70° and m $\angle$ C = 45°. Which of the sides of the triangle is longest and which is the shortest?

4. Prove that in a right-angled triangle, the hypotenuse is longer than



## From a point, outside a line, the perpendicular is the shortest



#### To Prove

 $m\overline{CD}$  is the shortest distance form the point C to AB.

#### Construction

Take a point E on  $\overrightarrow{AB}$  . Join C and E to form a  $\triangle CDE$ .

#### Proof

| Statements                                  | Reasons                                                                        |
|---------------------------------------------|--------------------------------------------------------------------------------|
| In ∆CDE                                     |                                                                                |
| m∠CDB > m∠CED                               | (An exterior angle of a triangle is greater than non adjacent interior angle). |
| But m∠CDB = m∠CDE<br>∴ m∠CDE > m∠CED        | Supplement of right angle.                                                     |
| or m∠CED < m∠CDE                            | $a > b \Rightarrow b < a$                                                      |
| or $m\overline{CD} < m\overline{CE}$        | Side opposite to greater angle is greater.                                     |
| But E is any point on $\overrightarrow{AB}$ |                                                                                |
| Hence mCD is the shortest                   |                                                                                |
| distance from C to $\overrightarrow{AB}$ .  |                                                                                |

#### Note:

- The distance between a line and a point not on it, is the length (i) of the perpendicular line segment from the point to the line.
- The distance between a line and a point lying on it is zero. (ii)

#### **EXERCISE 13.2**

In the figure, P is any point and AB is a line. Which of the following 1. is the shortest distance between the point P and the line AB?



- (a) m∠PLA = 80° (c) m∠PLA = 90°
- In the figure,  $\overline{PL}$  is prependicular 3. to the line  $\overline{AB}$  and  $\overline{mLN} > \overline{mLM}$ . Prove that  $m\overline{PN} > m\overline{PM}$ .

### **REVIEW EXERCISE 13**

- 1. Which of the following are true and which are false?
  - (i) The angle opposite to the longer side is greater......
  - (ii) In a right-angled triangle greater angle is of 60°. .....
  - (iii) In an isosceles right-angled triangle, angles other than right angle are each of 45°. .....
  - triangle. .....
  - (v) A perpendicular from a point to line is shortest distance. ... (vi) Perpendicular to line form an angle of 90°. .....

  - (vii) A point out side the line is collinear. .....
  - (viii) Sum of two sides of triangle is greater than the third. .....
  - (ix) The distance between a line and a point on it is zero. .....
  - (x) Triangle can be formed of lengths 2 cm, 3 cm and 5 cm. ...
- 2. What will be angle for shortest distance from an outside point to the line?
- 3. If 13 cm, 12 cm, and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the measure of the third side.
- 4. If 10 cm, 6 cm and 8 cm are the lengths of a triangle, then verify that sum of measures of two sides of a triangle is greater than the third side.
- reason.

Version: 1.1



(iv) A triangle having two congruent sides is called equilateral

5. 3 cm, 4 cm and 7 cm are not the lengths of the triangle. Give the



6. If 3 cm and 4 cm are lengths of two sides of a right angle triangle, then what should be the third length of the triangle.

#### **SUMMARY**

In this unit we stated and proved the following theorems:

- If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.
- If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.
- The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
- From a point, outside a line, the perpendicular is the shortest distance from the point to the line.